m- and p-aminobenzoic acids were converted to the title compounds by sequential use of ClCH2COCl, SOCl2, glycine methyl or ethyl ester, AcSK, and hydrolysis. The title compounds and a number of salts were compared for mucolytic activity, toxicity, stability, and hygroscopicity. When compared to N-acetyl-L-cysteine (NAC), the compounds exhibit several times the in vitro mucolytic activity of NAC on a molar basis. The most promising candidate appears to be the sodium salt 3.5H2O 2 of the meta series.
m- and p-aminobenzoic acids were converted to the title compounds by sequential use of ClCH2COCl, SOCl2, glycine methyl or ethyl ester, AcSK, and hydrolysis. The title compounds and a number of salts were compared for mucolytic activity, toxicity, stability, and hygroscopicity. When compared to N-acetyl-L-cysteine (NAC), the compounds exhibit several times the in vitro mucolytic activity of NAC on a molar basis. The most promising candidate appears to be the sodium salt 3.5H2O 2 of the meta series.
TRAP Display: A High-Speed Selection Method for the Generation of Functional Polypeptides
作者:Takahiro Ishizawa、Takashi Kawakami、Patrick C. Reid、Hiroshi Murakami
DOI:10.1021/ja312579u
日期:2013.4.10
Here, we describe a novel method that enables highspeed in vitro selection of functional peptides, peptidomimetics, and proteins via a simple procedure. We first developed a new cell-free translation system, the TRAP system (transcription translation coupled with association of Euromycin linker), which automatically produces a polypeptide library through a series of sequential reactions: transcription, association of puromycin-DNA linker, translation, and conjugation between the nascent polypeptide and puromycin-DNA linker. We then applied the TRAP system for the selection of macrocyclic peptides against human serum albumin. Six rounds of selection using TRAP display were performed in approximately 14 h, yielding macrocyclic peptides with nanomolar affinity to their target protein. Because TRAP display enables high-speed selection of functional polypeptides, it will facilitate the generation of various polypeptides that are useful for biological and therapeutic applications.