摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

anisole-α-13C | 29676-15-1

中文名称
——
中文别名
——
英文名称
anisole-α-13C
英文别名
(13)C-anisole;(113C)methoxybenzene
anisole-α-13C化学式
CAS
29676-15-1
化学式
C7H8O
mdl
——
分子量
109.129
InChiKey
RDOXTESZEPMUJZ-OUBTZVSYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.1
  • 重原子数:
    8
  • 可旋转键数:
    1
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.14
  • 拓扑面积:
    9.2
  • 氢给体数:
    0
  • 氢受体数:
    1

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    anisole-α-13C 以 further solvent(s) 为溶剂, 生成 C13取代的一氧化碳
    参考文献:
    名称:
    Pathways and Kinetics of Anisole Pyrolysis Studied by NMR and Selective 13C Labeling. Heterolytic Carbon Monoxide Generation
    摘要:
    在 0.001-1.0 M (M, mol dm-3) 和 400-600 °C (超临界条件) 的黑暗条件下,应用 13C 和 1H NMR 光谱研究了位点选择性 13C 富集 (H313CO12C6H5) 和普通苯甲醚化合物的热解。13C 标记甲基的转化仅限于甲氧基产生的片段 13CO 和 13CH4 以及反应中间体 H13CHO*。正常的苯基 12C6H5- 被转化为苯 12C6H6 和苯酚 12C6H5OH 而不发生环分解。热解包括两个基本步骤:(1) 决定速率的单分子醚键裂变(k1),通过分子内质子从甲氧基转移到苯基,生成碎片产物 C6H6 和能量中间体 H13CHO*;(2) 快速双分子歧化(k2),通过分子间质子/氢从 H13CHO* 转移到 H313COC6H5,生成 13CO、13CH4 和 C6H5OH。尽管速率常数(k1)和活化能一致,但在文献中,CO 是通过异解(离子)机制生成的,而不是通过苯氧基自由基中间体(C6H5O-)的同解(自由基)机制生成的。
    DOI:
    10.1246/bcsj.20110334
  • 作为产物:
    描述:
    碘甲烷-13C 、 苯酚 生成 anisole-α-13C
    参考文献:
    名称:
    Pathways and Kinetics of Anisole Pyrolysis Studied by NMR and Selective 13C Labeling. Heterolytic Carbon Monoxide Generation
    摘要:
    在 0.001-1.0 M (M, mol dm-3) 和 400-600 °C (超临界条件) 的黑暗条件下,应用 13C 和 1H NMR 光谱研究了位点选择性 13C 富集 (H313CO12C6H5) 和普通苯甲醚化合物的热解。13C 标记甲基的转化仅限于甲氧基产生的片段 13CO 和 13CH4 以及反应中间体 H13CHO*。正常的苯基 12C6H5- 被转化为苯 12C6H6 和苯酚 12C6H5OH 而不发生环分解。热解包括两个基本步骤:(1) 决定速率的单分子醚键裂变(k1),通过分子内质子从甲氧基转移到苯基,生成碎片产物 C6H6 和能量中间体 H13CHO*;(2) 快速双分子歧化(k2),通过分子间质子/氢从 H13CHO* 转移到 H313COC6H5,生成 13CO、13CH4 和 C6H5OH。尽管速率常数(k1)和活化能一致,但在文献中,CO 是通过异解(离子)机制生成的,而不是通过苯氧基自由基中间体(C6H5O-)的同解(自由基)机制生成的。
    DOI:
    10.1246/bcsj.20110334
点击查看最新优质反应信息

文献信息

  • Skeletal rearrangements preceding CO loss from metastable phenoxymethylene ions derived from phenoxyacetic acid and anisole
    作者:Tineke A. Molenaar-Langeveld、Steen Ingemann、Nico M. M. Nibeering
    DOI:10.1002/oms.1210281031
    日期:1993.10
    AbstractThe loss of CH2˙ from the molecular ion of phenoxyacetic acid and the expulsion of an H˙ atom from ionized anisole lead to phenoxymethylen ions, which fragment predominantly by CO loss on the microsecond time‐scale. Carbon‐13 labelling reveals that ∼90% of the CO molecules expelled from the metastable ions derived from phenoxyacetic acid incorporate the carbon atom from the 1‐position of the phenyl group of the parent compound, whereas the residual CO molecules contain one of the other carbon atoms of the aromatic ring. The 2‐fluoro‐ and 2‐methylphenoxymethylene ions derived from the appropriate aryloxyacetic acids behave similarly, i.e. the carbon atom of the methylene group of the parent compound is not incorporated in the expelled CO molecules. In contrast, ∼45% of the CO molecules eliminated from the metastable phenoxymethylene ions formed from ionized anisole contain the carbon atom of the methyl group, while the remaining part contains the carbon atom from the 1‐position of the phenyl ring of the parent compound. This result is taken as evidence for the occurrence of a skeletal rearrangement of the anisole molecular ion leading to an interchange between the carbon atom of the methyl group and the carbon atom at the 1‐position of the ring. The elimination of CO from the metastable ions generated from either phenoxyacetic acid or anisole gives rise to a composite metastable peak. Conclusive evidence as to the formation of [C7H7O]+ isomers other than the phenoxymethylene ion is not obtained, indicating that the composite metastable peak is a result of two competing reactions both leading to CO loss. Possible mechanisms of these reactions are discussed together with the mechanism of the skeletal rearrangement of the molecular ion of anisole prior to H˙ loss.
  • Schaefer, Ted; Penner, Glenn H., Canadian Journal of Chemistry, 1988, vol. 66, p. 1635 - 1640
    作者:Schaefer, Ted、Penner, Glenn H.
    DOI:——
    日期:——
  • Schaefer, Ted; Laatikainen, Reino; Wildman, Timothy A., Canadian Journal of Chemistry, 1984, vol. 62, p. 1592 - 1597
    作者:Schaefer, Ted、Laatikainen, Reino、Wildman, Timothy A.、Peeling, James、Penner, Glenn H.、et al.
    DOI:——
    日期:——
  • Pathways and Kinetics of Anisole Pyrolysis Studied by NMR and Selective <sup>13</sup>C Labeling. Heterolytic Carbon Monoxide Generation
    作者:Yasuo Tsujino、Yoshiro Yasaka、Nobuyuki Matubayasi、Masaru Nakahara
    DOI:10.1246/bcsj.20110334
    日期:2012.1.15
    By applying 13C and 1H NMR spectroscopy the pyrolysis of site-selectively 13C-enriched (H313CO12C6H5) and normal anisole compounds was studied in the dark at 0.001–1.0 M (M, mol dm−3) and at 400–600 °C (supercritical conditions). Conversion of the 13C-labeled methyl group was confined to the methoxy-originated fragments, 13CO and 13CH4, and the reactive intermediate, H13CHO*. The normal phenyl group, 12C6H5– was converted to benzene, 12C6H6 and phenol, 12C6H5OH without ring disintegration. The pyrolysis consists of two elementary steps: (1) the rate-determining unimolecular ether-bond fission (k1) to generate the fragmented product C6H6 and energized intermediate H13CHO* through the intramolecular proton transfer from the methoxy group to the phenyl, and (2) the fast bimolecular disproportionation (k2) through the intermolecular proton/hydride transfer from H13CHO* to H313COC6H5 to produce 13CO, 13CH4, and C6H5OH. CO is generation by the heterolytic (ionic) mechanism in contrast to the homolytic (radical) one via the phenoxy radical intermediate (C6H5O•) in the literature despite the agreement of the rate constant (k1) and the activation energy.
    在 0.001-1.0 M (M, mol dm-3) 和 400-600 °C (超临界条件) 的黑暗条件下,应用 13C 和 1H NMR 光谱研究了位点选择性 13C 富集 (H313CO12C6H5) 和普通苯甲醚化合物的热解。13C 标记甲基的转化仅限于甲氧基产生的片段 13CO 和 13CH4 以及反应中间体 H13CHO*。正常的苯基 12C6H5- 被转化为苯 12C6H6 和苯酚 12C6H5OH 而不发生环分解。热解包括两个基本步骤:(1) 决定速率的单分子醚键裂变(k1),通过分子内质子从甲氧基转移到苯基,生成碎片产物 C6H6 和能量中间体 H13CHO*;(2) 快速双分子歧化(k2),通过分子间质子/氢从 H13CHO* 转移到 H313COC6H5,生成 13CO、13CH4 和 C6H5OH。尽管速率常数(k1)和活化能一致,但在文献中,CO 是通过异解(离子)机制生成的,而不是通过苯氧基自由基中间体(C6H5O-)的同解(自由基)机制生成的。
查看更多