Pathways and Kinetics of Anisole Pyrolysis Studied by NMR and Selective <sup>13</sup>C Labeling. Heterolytic Carbon Monoxide Generation
作者:Yasuo Tsujino、Yoshiro Yasaka、Nobuyuki Matubayasi、Masaru Nakahara
DOI:10.1246/bcsj.20110334
日期:2012.1.15
By applying 13C and 1H NMR spectroscopy the pyrolysis of site-selectively 13C-enriched (H313CO12C6H5) and normal anisole compounds was studied in the dark at 0.001–1.0 M (M, mol dm−3) and at 400–600 °C (supercritical conditions). Conversion of the 13C-labeled methyl group was confined to the methoxy-originated fragments, 13CO and 13CH4, and the reactive intermediate, H13CHO*. The normal phenyl group, 12C6H5– was converted to benzene, 12C6H6 and phenol, 12C6H5OH without ring disintegration. The pyrolysis consists of two elementary steps: (1) the rate-determining unimolecular ether-bond fission (k1) to generate the fragmented product C6H6 and energized intermediate H13CHO* through the intramolecular proton transfer from the methoxy group to the phenyl, and (2) the fast bimolecular disproportionation (k2) through the intermolecular proton/hydride transfer from H13CHO* to H313COC6H5 to produce 13CO, 13CH4, and C6H5OH. CO is generation by the heterolytic (ionic) mechanism in contrast to the homolytic (radical) one via the phenoxy radical intermediate (C6H5O•) in the literature despite the agreement of the rate constant (k1) and the activation energy.
在 0.001-1.0 M (M, mol dm-3) 和 400-600 °C (超临界条件) 的黑暗条件下,应用 13C 和 1H NMR 光谱研究了位点选择性 13C 富集 (H313CO12C6H5) 和普通苯甲醚化合物的热解。13C 标记甲基的转化仅限于甲氧基产生的片段 13CO 和 13CH4 以及反应中间体 H13CHO*。正常的苯基 12C6H5- 被转化为苯 12C6H6 和苯酚 12C6H5OH 而不发生环分解。热解包括两个基本步骤:(1) 决定速率的单分子醚键裂变(k1),通过分子内质子从甲氧基转移到苯基,生成碎片产物 C6H6 和能量中间体 H13CHO*;(2) 快速双分子歧化(k2),通过分子间质子/氢从 H13CHO* 转移到 H313COC6H5,生成 13CO、13CH4 和 C6H5OH。尽管速率常数(k1)和活化能一致,但在文献中,CO 是通过异解(离子)机制生成的,而不是通过苯氧基自由基中间体(C6H5O-)的同解(自由基)机制生成的。