ABSTRACT
S
-Adenosyl-
l
-homocysteine, the product of
S
-adenosyl-
l
-methionine (SAM) methyltransferases, is known to be a strong feedback inhibitor of these enzymes. A hydrolase specific for
S
-adenosyl-
l
-homocysteine produces
l
-homocysteine, which is remethylated to methionine and can be used to regenerate SAM. Here, we show that the annotated
S
-adenosyl-
l
-homocysteine hydrolase in
Methanocaldococcus jannaschii
is specific for the hydrolysis and synthesis of
S
-inosyl-
l
-homocysteine, not
S
-adenosyl-
l
-homocysteine. This is the first report of an enzyme specific for
S
-inosyl-
l
-homocysteine. As with
S
-adenosyl-
l
-homocysteine hydrolase, which shares greater than 45% sequence identity with the
M. jannaschii
homologue, the
M. jannaschii
enzyme was found to copurify with bound NAD
+
and has
K
m
values of 0.64 ± 0.4 mM, 0.0054 ± 0.006 mM, and 0.22 ± 0.11 mM for inosine,
l
-homocysteine, and
S
-inosyl-
l
-homocysteine, respectively. No enzymatic activity was detected with
S
-adenosyl-
l
-homocysteine as the substrate in either the synthesis or hydrolysis direction. These results prompted us to redesignate the
M. jannaschii
enzyme an
S
-inosyl-
l
-homocysteine hydrolase (SIHH). Identification of SIHH demonstrates a modified pathway in this methanogen for the regeneration of SAM from
S
-adenosyl-
l
-homocysteine that uses the deamination of
S
-adenosyl-
l
-homocysteine to form
S
-inosyl-
l
-homocysteine.
IMPORTANCE
In strictly anaerobic methanogenic archaea, such as
Methanocaldococcus jannaschii
, canonical metabolic pathways are often not present, and instead, unique pathways that are deeply rooted on the phylogenetic tree are utilized by the organisms. Here, we discuss the recycling pathway for
S
-adenosyl-
l
-homocysteine, produced from
S
-adenosyl-
l
-methionine (SAM)-dependent methylation reactions, which uses a hydrolase specific for
S
-inosyl-
l
-homocysteine, an uncommon metabolite. Identification of the pathways and the enzymes involved in the unique pathways in the methanogens will provide insight into the biochemical reactions that were occurring when life originated.
摘要
S
-腺苷
l
-高半胱氨酸的产物
S
-腺苷
l
众所周知,高半胱氨酸是 S-腺苷-l-蛋氨酸(SAM)甲基转移酶的产物,是这些酶的强反馈抑制剂。一种专门针对
S
-腺苷
l
-同型半胱氨酸产生
l
-高半胱氨酸,后者被再甲基化为蛋氨酸,可用于再生 SAM。在这里,我们展示了注释的
S
-腺苷-
l
-同型半胱氨酸水解酶。
甲烷球菌中的
的水解和合成具有特异性。
S
-半胱氨酸
l
-高半胱氨酸,而不是
S
-腺苷
l
-高半胱氨酸。这是首次报道一种特异于
S
-腺苷-
l
-高半胱氨酸的特异性酶。与
S
-腺苷
l
-高半胱氨酸水解酶一样,它与 M. jannaschii 的 S -腺苷-l-高半胱氨酸水解酶有超过 45% 的序列相同性。
同源物
同源物
同源物
酶与结合的 NAD
+
并具有
K
m
值分别为 0.64 ± 0.4 mM、0.0054 ± 0.006 mM 和 0.22 ± 0.11 mM、
l
-高半胱氨酸和
S
-肌苷
l
-高半胱氨酸。没有检测到
S
-腺苷
l
-高半胱氨酸作为底物时,无论是合成方向还是水解方向都没有检测到酶活性。这些结果促使我们将
M. jannaschii
酶重新命名为
S
-氨基-
l
-高半胱氨酸水解酶(SIHH)。SIHH 的鉴定表明,这种甲烷发生器中的 SAM 从
S
-腺苷-
l
-高半胱氨酸的脱氨作用。
S
-腺苷
l
-形成
S
-腺苷
l
-高半胱氨酸。
重要意义
在严格厌氧的产甲烷古菌中,如
甲烷醛球菌(Methanocaldococcus jannaschii
等严格厌氧的甲烷发生古菌中,通常不存在典型的代谢途径,而是利用在系统发育树上根深蒂固的独特途径。在这里,我们将讨论
S
-腺苷
l
-高半胱氨酸的循环途径。
S
-腺苷
l
-甲硫氨酸(SAM)依赖性甲基化反应产生的,它使用一种特异于
S
-腺苷-
l
-同型半胱氨酸(一种不常见的代谢物)的水解酶。鉴定甲烷菌中的独特途径和参与途径的酶将有助于深入了解生命起源时发生的生化反应。