| 中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
|---|---|---|---|---|
| —— | Hexaphenyldigermane | 2816-39-9 | C36H30Ge2 | 607.814 |
| —— | 1,1,2,2-tetraphenyl 1,2-digermyldilithium | 151920-23-9 | C24H20Ge2Li2 | 467.485 |
| 中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
|---|---|---|---|---|
| —— | 1-methyl-1,1,2,2-tetraphenyldigermane | 151920-27-3 | C25H24Ge2 | 469.646 |
| —— | chloro(diphenyl)germanium,diphenyl-λ3-germane | 37718-79-9 | C24H21ClGe2 | 490.064 |
The synthesis of the hexagermane Pri3Ge(GePh2)4GePri3 was achieved starting from the cyclotetragermane (Ph2Ge)4. Ring-opening of (Ph2Ge)4 with Br2 yielded Br(GePh2)4Br that was converted to H(GePh2)4H, and this material was treated with two equiv. of Pri3GeNMe2 to furnish Pri3Ge(GePh2)4GePri3 via the hydrogermolysis reaction. The X-ray crystal structures of (Ph2Ge)4, Br(GePh2)4Br and Pri3Ge(GePh2)4GePri3 were determined. The hexagermane Pri3Ge(GePh2)4GePri3 represents the longest structurally characterized linear oligogermane reported to date and exhibits physical properties that resemble those of the larger polygermane systems. The hexagermane is luminescent and interacts with polarized light, appearing pale yellow under one orientation of polarized light and deep blue under the opposite orientation. The electrochemistry of Pri3Ge(GePh2)4GePri3 was also explored, and this species exhibits the expected five irreversible oxidation waves.
The photochemistry of diphenylbis(trimethylsilyl)germane (2a) and 1,4-dihydro-5-methyl-1,2,3,4,9,9-hexaphenyl-1,4-germanonaphthalene (11) has been studied in solution by steady-state and laser flash photolysis methods with a view to detecting the transient germylene derivative diphenylgermylene (Ph2Ge), which has previously been shown to be the major product of photolysis of 2a and a closely related derivative of 11. Steady-state trapping experiments confirm the formation of Ph2Ge as the major germanium containing primary product in both cases; with 2a, the results indicate that other transient species are also formed in minor yields, including phenyl(trimethylsilyl)germylene (Ph(TMS)Ge, ca. 6%) and diphenyl(trimethylsilyl)germyl radicals (Ph2(TMS)Ge, ≥15%). Laser flash photolysis of 2a in deoxy genated hexane solution yields a complex mixture of overlapping transient absorptions, which is shown to be comprised of Ph2Ge, tetraphenyldigermene (15) and its oligomerization products, and another species with spectral characteristics similar to the Ph2(TMS)Ge radical. The latter has been independently generated by hydrogen abstraction from diphenyl(trimethylsilyl)germane by tert-butoxyl radicals. Compound 11 extrudes Ph2Ge more cleanly and efficiently upon photolysis in solution, yet laser flash photolysis affords excited triplet and triplet-derived species as the only detectable transient products; interpretation of the results for this compound is made difficult by its slow thermal decomposition to 5-methyl-1,2,3,4-tetraphenylnaphthalene. It is concluded that in spite of the fact that both 2a and 11 afford Ph2Ge in high yield upon photolysis, they are poor precursors for study of the species in solution by time-resolved UVvis methods, owing to the formation of other, more strongly absorbing transient products than Ph2Ge, whose lowest energy absorption is characteristically weak.Key words: germylene, germyl radical, flash photolysis, disilylgermane, photochemistry.