Synthesis and Anti-inflammatory Evaluation of Novel Benzimidazole and Imidazopyridine Derivatives
摘要:
Sepsis, an acute inflammatory disease, remains the most common cause of death in intensive care units. A series of benzimidazole and imidazopyridine derivatives were synthesized and screened for anti-inflammatory activities, and the imidazopyridine series showed excellent inhibition of the expression of inflammatory cytokines in LPS-stimulated macrophages. Compounds X10, X12, X13, X14, and X15 inhibited TNF-alpha and IL-6 release in a dose-dependent manner, and X12 showed no cytotoxicity in hepatic cells. Furthermore, X12 exhibited a significant protection against LPS-induced septic death in mouse models. Together, these data present a series of new imidazopyridines with potential therapeutic effects in acute inflammatory diseases.
Riminophenazine Derivatives as Potential Antituberculosis Agents: Synthesis, Biological, and Electrochemical Evaluations
作者:Mpelegeng Victoria Bvumbi、Chris van der Westhuyzen、Edwin M. Mmutlane、Andile Ngwane
DOI:10.3390/molecules26144200
日期:——
have been designed and synthesized. Preliminary investigations into the relationship between lipophilicity, redox potential, and antimycobacterial activity were conducted, using the in vitro activity against Mycobacterium tuberculosis H37Rv, mammalian cytotoxicity, and the redox potential of the compounds determined by cyclic voltammetry as measures. Results revealed an activity “cliff” associated with
Sepsis, an acute inflammatory disease, remains the most common cause of death in intensive care units. A series of benzimidazole and imidazopyridine derivatives were synthesized and screened for anti-inflammatory activities, and the imidazopyridine series showed excellent inhibition of the expression of inflammatory cytokines in LPS-stimulated macrophages. Compounds X10, X12, X13, X14, and X15 inhibited TNF-alpha and IL-6 release in a dose-dependent manner, and X12 showed no cytotoxicity in hepatic cells. Furthermore, X12 exhibited a significant protection against LPS-induced septic death in mouse models. Together, these data present a series of new imidazopyridines with potential therapeutic effects in acute inflammatory diseases.