作者:Jian Jin、David W. C. MacMillan
DOI:10.1038/nature14885
日期:2015.9
The biochemical process of spin-centre shift is used to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors; this represents the first broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. A central reaction in DNA biosynthesis is ribonucleotide deoxygenation via the radical-mediated elimination of H2O, which is an example of 'spin-centre shift' (SCS), during which an alcohol CâO bond is cleaved to produce in a carbon-centred radical intermediate. Although SCS is a well-understood biochemical process, it is underutilized by the synthetic organic chemistry community. Here Jian Jin and David MacMillan show that it is possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylations using alcohols as radical precursors. This method represents the first broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the merger of photoredox and hydrogen atom transfer catalysis. Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage1. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of âspin-centre shiftâ2, during which an alcohol CâO bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides3,4,5,6,7, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.
利用自旋中心转移的生化过程,通过醇作为自由基前体,可以实现温和的、非传统的烷基化反应。这在合成有机化学领域尚未得到充分应用。本文中Jin Jian和David MacMillan展示了一种方法,即利用这一自然发生的自旋中心转移过程,以醇作为自由基前体,实现温和、非传统的烷基化反应。这种方法首次实现了在广泛应用上将非活化醇作为潜在烷基化试剂,其核心是通过光氧化还原与氢原子转移催化的结合来实现。氧化还原过程和自由基中间体在很多生化过程中都存在,包括脱氧核糖核酸的合成和氧化性DNA损伤。DNA生物合成的关键原理之一就是通过自由基介导的水分子消除反应来脱氧核糖核苷酸,这也是"自旋中心转移"的一个例子。在这个过程中,醇的C-O键断裂,形成碳中心的自由基中间产物。虽然自旋中心转移是一个广为人知的生化过程,但在合成有机化学领域,这一方法尚未得到广泛应用。我们想知道是否有可能利用这个自然发生的自旋中心转移过程,以醇作为自由基前体,实现温和、非传统的烷基化反应。传统的基于自由基的烷基化方法通常需要使用化学计量的氧化剂、提高温度或使用过氧化物,因此一个使用简单且丰富的烷基化试剂的温和协议在合成多样功能化的药物分子上具有很大的应用价值。在这里,我们描述了一种使用醇作为温和烷基化试剂的双催化烷基化杂芳烃的方法。据我们所知,这代表了首次在广泛应用上将非活化醇作为潜在烷基化试剂,其成功在于实现了光氧化还原与氢原子转移催化的结合。该多催化协议的价值已通过药物分子法舒地尔和米力农的后期功能化得到展示。