摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

| 1207524-45-5

中文名称
——
中文别名
——
英文名称
——
英文别名
——
化学式
CAS
1207524-45-5
化学式
C55H58N4OZn
mdl
——
分子量
856.482
InChiKey
MHXWKXTVULKOIT-MNBLUVICSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    silver(I) nitrite 作用下, 以 二氯甲烷乙腈 为溶剂, 以70%的产率得到
    参考文献:
    名称:
    State-Selective Electron Transfer in an Unsymmetric Acceptor−Zn(II)porphyrin−Acceptor Triad: Toward a Controlled Directionality of Electron Transfer from the Porphyrin S2 and S1 States as a Basis for a Molecular Switch
    摘要:
    A series of Zn(II) porphyrin (ZnP) compounds covalently linked to different electron acceptor units, naphthaleneimide (NI) and naphthalenedimide (NDI), are reported. The aim was to demonstrate a state-selective direction of electron transfer, where excitation to the lowest excited S-1 state of the porphyrin (Q-band excitation) would give electron transfer to the NDI unit, while excitation to the higher S-2 state (Soret-hand excitation) would give electron transfer to the NI unit. This would constitute a basis for an opto-electronic Switch in which the direction of electron transfer and the resulting dipole moment can be controlled by using light input of different color. Indeed, electron transfer from the S-1 state to NDI Occurred in solvents of both high and low polarity, whereas no electron transfer to NDI was observed from the S-2 state. With NI as acceptor instead, very rapid (tau = 200-400 fs) electron transfer from the S-2 state occurred in all solvents. This was followed by an ultrafast (tau approximate to 100 fs) recombination to Populate the porphyrin S-1 state in nearly quantitative yield. The charge-separated state ZnP+NI- was spectroscopically observed, and evidence was obtained that recombination Occurred from a vibrationally excited ("hot") ZnP+NI- state in the more polar solvents. In these solvents, the thermally relaxed ZnP+NI- state lies at lower energy than the S-1 state so that further charge separation occurred from S-1 to form ZnP+NI-. This resulted in a highly unusual "ping-pong" sequence where the reaction went back and forth between locally excited ZnP states and charge-separated states: S-2 double right arrow ZnP+NI"hot"- double right arrow S-1 double right arrow ZnP+NI- double right arrow S-0. The electron transfer dynamics and its solvent dependence are discussed, as well as the function of the present Molecules as molecular switches.
    DOI:
    10.1021/jp907824d
  • 作为产物:
    描述:
    zinc diacetate 作用下, 以 甲醇二氯甲烷 为溶剂, 生成
    参考文献:
    名称:
    State-Selective Electron Transfer in an Unsymmetric Acceptor−Zn(II)porphyrin−Acceptor Triad: Toward a Controlled Directionality of Electron Transfer from the Porphyrin S2 and S1 States as a Basis for a Molecular Switch
    摘要:
    A series of Zn(II) porphyrin (ZnP) compounds covalently linked to different electron acceptor units, naphthaleneimide (NI) and naphthalenedimide (NDI), are reported. The aim was to demonstrate a state-selective direction of electron transfer, where excitation to the lowest excited S-1 state of the porphyrin (Q-band excitation) would give electron transfer to the NDI unit, while excitation to the higher S-2 state (Soret-hand excitation) would give electron transfer to the NI unit. This would constitute a basis for an opto-electronic Switch in which the direction of electron transfer and the resulting dipole moment can be controlled by using light input of different color. Indeed, electron transfer from the S-1 state to NDI Occurred in solvents of both high and low polarity, whereas no electron transfer to NDI was observed from the S-2 state. With NI as acceptor instead, very rapid (tau = 200-400 fs) electron transfer from the S-2 state occurred in all solvents. This was followed by an ultrafast (tau approximate to 100 fs) recombination to Populate the porphyrin S-1 state in nearly quantitative yield. The charge-separated state ZnP+NI- was spectroscopically observed, and evidence was obtained that recombination Occurred from a vibrationally excited ("hot") ZnP+NI- state in the more polar solvents. In these solvents, the thermally relaxed ZnP+NI- state lies at lower energy than the S-1 state so that further charge separation occurred from S-1 to form ZnP+NI-. This resulted in a highly unusual "ping-pong" sequence where the reaction went back and forth between locally excited ZnP states and charge-separated states: S-2 double right arrow ZnP+NI"hot"- double right arrow S-1 double right arrow ZnP+NI- double right arrow S-0. The electron transfer dynamics and its solvent dependence are discussed, as well as the function of the present Molecules as molecular switches.
    DOI:
    10.1021/jp907824d
点击查看最新优质反应信息