AbstractWe show that if p is a real type which is almost internal in a formula φ in a simple theory, then there is a type p′ interalgebraic with a finite tuple of realizations of p, which is generated over φ. Moreover, the group of elementary permutations of p′ over all realizations of φ is type-definable.
我们展示了如果p是一个在简单理论中几乎内部的实类型,那么存在一个类型p',它与p的有限元组的实现内代数相关,并且在φ上生成。此外,p'的所有φ的实现上的元素置换群是类型可定义的。