Auxiliary-Assisted Palladium-Catalyzed Arylation and Alkylation of sp2 and sp3 Carbon−Hydrogen Bonds
摘要:
We have developed a method for auxiliary-directed, palladium-catalyzed beta-arylation and alkylation of sp(3) and sp(2) C-H bonds in carboxylic acid derivatives. The method employs a carboxylic acid 2-methylthioaniline- or 8-aminoquinoline amide substrate, aryl or alkyl iodide coupling partner, palladium acetate catalyst, and an inorganic base. By employing 2-methylthioaniline auxiliary, selective monoarylation of primary sp(3) C-H bonds can be achieved. If arylation of secondary sp(3) C-H bonds is desired, 8-aminoquinoline auxiliary may be used. For alkylation of sp(3) and sp(2) C-H bonds, 8-aminoquinoline auxiliary affords the best results. Some functional group tolerance is observed and amino- and hydroxy-acid derivatives can be functionalized. Preliminary mechanistic studies have been performed. A palladacycle intermediate has been isolated, characterized by X-ray crystallography, and its reactions have been studied.
Auxiliary-Assisted Palladium-Catalyzed Arylation and Alkylation of sp2 and sp3 Carbon−Hydrogen Bonds
摘要:
We have developed a method for auxiliary-directed, palladium-catalyzed beta-arylation and alkylation of sp(3) and sp(2) C-H bonds in carboxylic acid derivatives. The method employs a carboxylic acid 2-methylthioaniline- or 8-aminoquinoline amide substrate, aryl or alkyl iodide coupling partner, palladium acetate catalyst, and an inorganic base. By employing 2-methylthioaniline auxiliary, selective monoarylation of primary sp(3) C-H bonds can be achieved. If arylation of secondary sp(3) C-H bonds is desired, 8-aminoquinoline auxiliary may be used. For alkylation of sp(3) and sp(2) C-H bonds, 8-aminoquinoline auxiliary affords the best results. Some functional group tolerance is observed and amino- and hydroxy-acid derivatives can be functionalized. Preliminary mechanistic studies have been performed. A palladacycle intermediate has been isolated, characterized by X-ray crystallography, and its reactions have been studied.
Secondary amides are a class of highly stable compounds serving as versatile starting materials, intermediates and directing groups (amido groups) in organic synthesis. The direct deacylation of secondary amides to release amines is an important transformation in organic synthesis. Here, we report a protocol for the deacylation of secondary amides and isolation of amines. The method is based on the activation
Auxiliary-Assisted Palladium-Catalyzed Arylation and Alkylation of sp<sup>2</sup> and sp<sup>3</sup> Carbon−Hydrogen Bonds
作者:Dmitry Shabashov、Olafs Daugulis
DOI:10.1021/ja910900p
日期:2010.3.24
We have developed a method for auxiliary-directed, palladium-catalyzed beta-arylation and alkylation of sp(3) and sp(2) C-H bonds in carboxylic acid derivatives. The method employs a carboxylic acid 2-methylthioaniline- or 8-aminoquinoline amide substrate, aryl or alkyl iodide coupling partner, palladium acetate catalyst, and an inorganic base. By employing 2-methylthioaniline auxiliary, selective monoarylation of primary sp(3) C-H bonds can be achieved. If arylation of secondary sp(3) C-H bonds is desired, 8-aminoquinoline auxiliary may be used. For alkylation of sp(3) and sp(2) C-H bonds, 8-aminoquinoline auxiliary affords the best results. Some functional group tolerance is observed and amino- and hydroxy-acid derivatives can be functionalized. Preliminary mechanistic studies have been performed. A palladacycle intermediate has been isolated, characterized by X-ray crystallography, and its reactions have been studied.