Oxidative folding of lysozyme with aromatic dithiols, and aliphatic and aromatic monothiols
摘要:
In vitro protein folding of disulfide containing proteins is aided by the addition of a redox buffer, which is composed of a small molecule disulfide and/or a small molecule thiol. In this study, we examined redox buffers containing asymmetric dithiols 1-5, which possess an aromatic and aliphatic thiol, and symmetric dithiols 6 and 7, which possess two aromatic thiols, for their ability to fold reduced lysozyme at pH 7.0 and 8.0. Most in vivo protein folding catalysts are dithiols. When compared to glutathione and glutathione disulfide, the standard redox buffer, dithiols 1-5 improved the protein folding rates but not the yields. However, dithiols 6 and 7, and the corresponding monothiol 8 increased the folding rates 8-17 times and improved the yields 15-42% at 1 mg/mL lysozyme. Moreover, aromatic dithiol 6 increased the in vitro folding yield as compared to the corresponding aromatic monothiol 8. Therefore, aromatic dithiols should be useful for protein folding, especially at high protein concentrations. (C) 2011 Elsevier Ltd. All rights reserved.
Properties of phenolic and thiophenolic surfactant micelles
作者:Robert A. Moss、Frank M. Dix
DOI:10.1021/jo00328a008
日期:1981.7
Rate enhancement of the oxidative folding of lysozyme by the use of aromatic thiol containing redox buffers
作者:Minakshi C. Gurbhele-Tupkar、Lissette R. Perez、Yenia Silva、Watson J. Lees
DOI:10.1016/j.bmc.2007.11.047
日期:2008.3
Almost all therapeutic proteins and most extracellular proteins contain disulfide bonds. The production of these proteins in bacteria or in vitro is challenging due to the need to form the correctly matched disulfide bonds during folding. One important parameter for efficient in vitro folding is the composition of the redox buffer, a mixture of a small molecule thiol and small molecule disulfide. The effects of different redox buffers on protein folding, however, have received limited attention. The oxidative folding of denatured reduced lysozyme was followed in the presence of redox buffers containing varying concentrations of five different aromatic thiols or the traditional aliphatic thiol glutathione (GSH). Aromatic thiols eliminated the lag phase at low disulfide concentrations, increased the folding rate constant up to 11-fold, and improved the yield of active protein relative to GSH. The yield of active protein was similar for four of the five aromatic thiols and for glutathione at pH 7 as well as for glutathione at pH 8.2. At pH 6 the positively charged aromatic thiol provided a higher yield than the negatively charged thiols. (C) 2007 Elsevier Ltd. All rights reserved.