Non-steroidal dissociated glucocorticoid agonists: indoles as A-ring mimetics and function-regulating pharmacophores
摘要:
We report a SAR of non-steroidal glucocorticoid mimetics that utilize indoles as A-ring mimetics. Detailed SAR is discussed with a focus on improving PR and MR selectivity, GR agonism, and in vitro dissociation profile. SAR analysis led to compound (R)-33 which showed high PR and MR selectivity, potent agonist activity, and reduced transactivation activity in the MMTV and aromatase assays. The compound is equipotent to prednisolone in the LPS-TNF model of inflammation. In mouse CIA, at 30 mg/kg compound (R)-33 inhibited disease progression with an efficacy similar to the 3 mg/kg dose of prednisolone. (C) 2011 Elsevier Ltd. All rights reserved.
Non-steroidal dissociated glucocorticoid agonists: indoles as A-ring mimetics and function-regulating pharmacophores
摘要:
We report a SAR of non-steroidal glucocorticoid mimetics that utilize indoles as A-ring mimetics. Detailed SAR is discussed with a focus on improving PR and MR selectivity, GR agonism, and in vitro dissociation profile. SAR analysis led to compound (R)-33 which showed high PR and MR selectivity, potent agonist activity, and reduced transactivation activity in the MMTV and aromatase assays. The compound is equipotent to prednisolone in the LPS-TNF model of inflammation. In mouse CIA, at 30 mg/kg compound (R)-33 inhibited disease progression with an efficacy similar to the 3 mg/kg dose of prednisolone. (C) 2011 Elsevier Ltd. All rights reserved.
Aqueous Titanium Trichloride Promoted Reductive Cyclization of
<i>o</i>
‐Nitrostyrenes to Indoles: Development and Application to the Synthesis of Rizatriptan and Aspidospermidine
TiCl3 solution at room temperature afforded indoles through a formal reductive C(sp2)–H amination process. A range of functions such as halides (Cl, Br), carbonyl (ester, carbamate), cyano, hydroxy, and amino groups were tolerated. From β,β‐disubstituted o‐nitrostyrenes, 2,3‐disubstituted indoles were formed by a domino reduction/cyclization/migration process. Mild conditions, simple experimental procedure
Compounds effective in inhibiting replication of Hepatitis C virus (“HCV”) or other viruses are disclosed. This invention is also directed to compositions comprising such compounds, co-formulation or co-administration of such compounds with other anti-viral or therapeutic agents, processes and intermediates for the syntheses of such compounds, and methods of using such compounds for the treatment of HCV or other viral infections.
Compounds effective in inhibiting replication of Hepatitis C virus (“HCV”) or other viruses are disclosed. This invention is also directed to compositions comprising such compounds, co-formulation or co-administration of such compounds with other anti-viral or therapeutic agents, processes and intermediates for the syntheses of such compounds, and methods of using such compounds for the treatment of HCV or other viral infections.
Compounds effective in inhibiting replication of Hepatitis C virus (“HCV”) or other viruses are disclosed. This invention is also directed to compositions comprising such compounds, co-formulation or co-administration of such compounds with other anti-viral or therapeutic agents, processes and intermediates for the syntheses of such compounds, and methods of using such compounds for the treatment of HCV or other viral infections.
The present invention is directed to the use of compounds effective in inhibiting replication of Hepatitis C virus ("HCV") or other viruses, tautomers of said compounds, or pharmaceutically acceptable salts of said compounds or tautomers, for the manufacture of a medicament for the treatment of HCV.