The gold(I) complex [Au(dppbO)Cl] was synthesized by reaction of Na[AuCl4]·2H2O with 1,2-bis(diphenylphosphino)benzene (dppb) in the presence of water. This is a new method for the synthesis of a bisphosphine monoxide gold(I) complex. The new gold(I) complex was characterized by NMRspectroscopy and X-raycrystalstructure analysis. In the solid state structure a relatively short contact between the
Efficient trans-hydroarylation of alkynes by simple arenes has been realized regio- and stereoselectively at room temperature in the presence of Pd(II) or Pt(II) catalysts and a mixed solvent containing trifluoroacetic acid (TFA). Various arenes undergo trans-hydroarylation selectively across terminal and internal C-C triple bonds-including those conjugated to CHO, COMe, CO2H, and CO2Et groups, affording kinetically controlled cis-arylalkenes predominantly in most cases, especially, in good yields for electron-rich arenes and activated alkynes. The formation of arene/alkyne 1/2 or 2/1 adducts as side products is dependent on the arenes' and alkynes' substituents, which can be suppressed in some cases by changing the catalyst, catalyst concentration, and reaction time. The Pt(II) system, PtCl2/2AgOAc/TFA, shows lower catalytic activity than Pd(OAc)(2)/TFA, but higher selectivity, giving higher yields of adducts at the same conversion. On the basis of several isotope experiments and control reactions, a possible mechanism involving electrophilic metalation of aromatic C-H bonds by in-situ-generated cationic Pd(II) and Pt(II) species leading to intermolecular trans-arylpalladation to alkynes has been discussed.
Highly Efficient Alkyne Hydroarylation with Chelating Dicarbene Palladium(II) and Platinum(II) Complexes
reaction protocol for the coupling of arenes with alkynes (the Fujiwara reaction), yielding products of formal trans-hydroarylation of the triple bond. The protocol makes use of a chelating N-heterocyclic dicarbene palladium(II) complex as catalyst and allows us to perform the reaction in a few hours with only 0.1 mol % catalyst yielding the trans-hydroarylation product in high yields and with excellent selectivity