A Facile Microwave and SnCl2 Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones
作者:Nicholas S. O'Brien、Adam McCluskey
DOI:10.1071/ch20101
日期:——
An elegantly simple, facile, and robust approach to a scaffold of biological importance, 2,3-dihydroquinazolin-4(1H)-ones, is reported. A catalytic 1 % SnCl2/microwave-mediated approach afforded access to pure material, collected by cooling and filtration after 20-min microwave irradiation at 120°C. A total of 41 analogues were prepared in isolated yields of 17–99 %. This process was highly tolerant
Heterogeneous Cu(<scp>ii</scp>)/<scp>l</scp>-His@Fe<sub>3</sub>O<sub>4</sub> nanocatalyst: a novel, efficient and magnetically-recoverable catalyst for organic transformations in green solvents
A novel, efficient and green Cu(II)/L-His@Fe3O4 catalyst has been applied successfully in the synthesis of heterocyclic compounds. The resulting catalyst was used in the synthesis of 2,3-dihydroquinazolin-4(1H)-ones, polyhydroquinolines and 2-amino-6-(arylthio)pyridine-3,5-dicarbonitriles as biologically interesting compounds. The present research is focused on investigation of recycling, reusability
一种新颖,高效,绿色的Cu(II)/ L- His @ Fe 3 O 4催化剂已成功用于杂环化合物的合成。所得催化剂用于合成2,3-二氢喹唑啉-4(1H)-酮,聚氢喹啉和2-氨基-6-(芳硫基)吡啶-3,5-二碳腈作为生物学上感兴趣的化合物。本研究的重点是研究相反应中催化剂的循环利用,可重复使用性和稳定性。Cu(II)/ L -His @ Fe 3 O 4该催化剂至少使用了六次,其活性与新鲜催化剂相当。通过TGA / DTG,EDS,XRD,VSM,FT-IR和SEM对催化剂的化学组成和结构进行了分析。
Synthesis of 2,3-dihydroquinazolin-4(1H)-ones catalyzed by succinimide-N-sulfonic acid as a mild and efficient catalyst
A simple, green and environmentally benign procedure was developed for the synthesis of 2,3-dihydro-2-phenylquinazolin-4(1H)-ones using catalytic amounts of succinimide-N-sulfonic acid via the cyclocondensation of 2-aminobenzamide with an aldehyde. The present methodology offers several advantages such as high yields, simple procedure, low cost, short reaction times, mild reaction conditions, and use of a reusable catalyst.
A novel protocol for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones from 2-aminobenzamides and aldehyde derivatives catalyzed by KOH/DMSO suspension has been developed. The present transition metal free methodology is operationally simple, scalable and varieties of 2,3-dihydroquinazolin-4(1H)-one derivatives were obtained in good to excellent yields in short reaction times.