摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

tert-butyl (3-((N-(3-((N-(3-(6-amino-9H-purin-9-yl)propyl)-2-nitrophenyl)sulfonamido)propyl)-2-nitrophenyl)sulfonamido)propyl)carbamate | 1380167-27-0

中文名称
——
中文别名
——
英文名称
tert-butyl (3-((N-(3-((N-(3-(6-amino-9H-purin-9-yl)propyl)-2-nitrophenyl)sulfonamido)propyl)-2-nitrophenyl)sulfonamido)propyl)carbamate
英文别名
——
tert-butyl (3-((N-(3-((N-(3-(6-amino-9H-purin-9-yl)propyl)-2-nitrophenyl)sulfonamido)propyl)-2-nitrophenyl)sulfonamido)propyl)carbamate化学式
CAS
1380167-27-0
化学式
C31H40N10O10S2
mdl
——
分子量
776.852
InChiKey
XTJUWBMBEINGKN-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.3
  • 重原子数:
    53.0
  • 可旋转键数:
    18.0
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.42
  • 拓扑面积:
    268.99
  • 氢给体数:
    2.0
  • 氢受体数:
    15.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Synthesis and binding properties of new selective ligands for the nucleobase opposite the AP site
    摘要:
    DNA is continuously damaged by endogenous and exogenous factors such as oxidative stress or DNA alkylating agents. These damaged nucleobases are removed by DNA N-glycosylase and form apurinic/apyrimidinic sites (AP sites) as intermediates in the base excision repair (BER) pathway. AP sites are also representative DNA damages formed by spontaneous hydrolysis. The AP sites block DNA polymerase and a mismatch nucleobase is inserted opposite the AP sites by polymerization to cause acute toxicities and mutations. Thus, AP site specific compounds have attracted much attention for therapeutic and diagnostic purposes. In this study, we have developed nucleobase-polyamine conjugates as the AP site binding ligand by expecting that the nucleobase part would play a role in the specific recognition of the nucleobase opposite the AP site by the Watson-Crick base pair formation and that the polyamine part should contribute to the access of the ligand to the AP site by a non-specific interaction to the DNA phosphate backbone. The nucleobase conjugated with 3,3'-diaminodipropylamine (A-ligand, G-ligand, C-ligand, T-ligand and U-ligand) showed a specific stabilization of the duplex containing the AP site depending on the complementary combination with the nucleobase opposite the AP site; that is A-ligand to T, G-ligand to C, C-ligand to G, T- and U-ligand to A. The thermodynamic binding parameters clearly indicated that the specific stabilization is due to specific binding of the ligands to the complementary AP site. These results have suggested that the complementary base pairs of the Watson-Crick type are formed at the AP site. (C) 2012 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmc.2012.04.009
  • 作为产物:
    参考文献:
    名称:
    Synthesis and binding properties of new selective ligands for the nucleobase opposite the AP site
    摘要:
    DNA is continuously damaged by endogenous and exogenous factors such as oxidative stress or DNA alkylating agents. These damaged nucleobases are removed by DNA N-glycosylase and form apurinic/apyrimidinic sites (AP sites) as intermediates in the base excision repair (BER) pathway. AP sites are also representative DNA damages formed by spontaneous hydrolysis. The AP sites block DNA polymerase and a mismatch nucleobase is inserted opposite the AP sites by polymerization to cause acute toxicities and mutations. Thus, AP site specific compounds have attracted much attention for therapeutic and diagnostic purposes. In this study, we have developed nucleobase-polyamine conjugates as the AP site binding ligand by expecting that the nucleobase part would play a role in the specific recognition of the nucleobase opposite the AP site by the Watson-Crick base pair formation and that the polyamine part should contribute to the access of the ligand to the AP site by a non-specific interaction to the DNA phosphate backbone. The nucleobase conjugated with 3,3'-diaminodipropylamine (A-ligand, G-ligand, C-ligand, T-ligand and U-ligand) showed a specific stabilization of the duplex containing the AP site depending on the complementary combination with the nucleobase opposite the AP site; that is A-ligand to T, G-ligand to C, C-ligand to G, T- and U-ligand to A. The thermodynamic binding parameters clearly indicated that the specific stabilization is due to specific binding of the ligands to the complementary AP site. These results have suggested that the complementary base pairs of the Watson-Crick type are formed at the AP site. (C) 2012 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmc.2012.04.009
点击查看最新优质反应信息