摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

dimethyl α-peroxy lactone | 39605-37-3

中文名称
——
中文别名
——
英文名称
dimethyl α-peroxy lactone
英文别名
3,3-dimethyl-1,2-dioxetanone;dimethyldioxetanone;Dimethyl-α-peroxylacton;4,4-dimethyldioxetan-3-one
dimethyl α-peroxy lactone化学式
CAS
39605-37-3
化学式
C4H6O3
mdl
——
分子量
102.09
InChiKey
MHUUEDKTLIMBPS-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    10 °C
  • 沸点:
    54.0±23.0 °C(Predicted)
  • 密度:
    1.160±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    0.6
  • 重原子数:
    7
  • 可旋转键数:
    0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.75
  • 拓扑面积:
    35.5
  • 氢给体数:
    0
  • 氢受体数:
    3

SDS

SDS:69cbe142e9bdca923a4b450b837c3c60
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    二甲基二氧杂环丁酮的化学发光。激发单线态和三线态丙酮的单分子生成。化学引发的电子交换发光,主要的发光反应
    摘要:
    摘要 : 二甲基二氧杂环丁酮 (2a) 经历两种不同的热反应,产生电子激发态。2a 在 30.0 C 的单分子分解产生激发的单线态和三线态丙酮,效率分别为 0.1% 和 1.5%。形成单线态丙酮的复合活化能比2a热消失的活化能大3-4 kcal/mol。这一结果被解释为二氧杂环丁酮分解的两条平行竞争途径,其中活性更高的一条导致激发的丙酮。添加易氧化的芳烃或胺类催化2a的化学发光。催化速率常数的大小和光产生效率与烃的单电子氧化电位相关。在这些条件下,化学发光由化学引发的电子交换发光 (CIEEL) 路径产生。(作者)
    DOI:
    10.1021/ja00521a049
  • 作为产物:
    描述:
    2-氢过氧-2-甲基丙酸N,N'-二环己基碳二亚胺 作用下, 以 三氯乙烷 为溶剂, 以71%的产率得到dimethyl α-peroxy lactone
    参考文献:
    名称:
    模式选择性的空间和立体电子控制作为与二甲基 α-过氧内酯反应中烯烃结构的函数:环负载和烯产物与环氧化物
    摘要:
    二、三和四取代的烯烃 2 被二甲基 α-过氧内酯 (1) 氧化得到环加成、烯和环氧化产物 3-6。在甲醇存在下,另外获得捕集产物7。观察到的产物分布中的二分法对于该反应需要两条不同的路径,即一条通过开放、拉伸的 1,6 偶极子的路径和另一条环氧化路径。两条路径都源于烯烃 2 的双键对 α-过氧内酯 1 的过氧化物键的 SN2 攻击,第一个不对称(端向攻击),导致 1,6 偶极子 A,第二个对称(中心攻击)关于双键的接近,导致环氧化。假设 1,6 偶极子提供环加合物,其中获得了热力学有利的非对映异构体,和烯产品。在环氧化中,氧转移后释放的 α-内酯低聚到聚酯 8 或在甲醇存在下被捕获为 α-甲氧基 a...
    DOI:
    10.1021/ja953442x
点击查看最新优质反应信息

文献信息

  • Chemiluminescent thermolysis of .alpha.-peroxylactones
    作者:Nicholas J. Turro、Ming-Fea Chow
    DOI:10.1021/ja00535a039
    日期:1980.7
    provides a means of evaluating the activation energies for the deactivation paths of electronically excited states that precede the emission step responsible for chemiluminescence. The latter activation energies may also be monitored directly in some cases by measurement of excited-state lifetimes as a function of temperature. The agreement between the activation energies generated from chemiluminescence
    对三种α-过氧内酯(二甲基α-过氧内酯(l)、苯基正丁基α-过氧内酯(t)和二苯基α-过氧内酯(3))的化学发光分解进行了全面研究。每种化合物分解以高产率产生 CO2 和相应的酮。在这些反应中产生的化学发光物质已经通过许多不同的测量来表征,包括直接化学发光的光谱分布、寿命、能量转移、活化参数和光化学反应。还评估了兴奋状态cliemiexcitation 效率。结果表明,传统动力学测量和“阶梯分析”相结合 化学发光强度的变化提供了一种评估在负责化学发光的发射步骤之前的电子激发态的失活路径的活化能的方法。在某些情况下,也可以通过测量作为温度函数的激发态寿命来直接监测后者的活化能。从化学发光数据和直接光激发测量产生的活化能之间的一致性在实验误差范围内。将 1 的结果与四甲基二氧杂环丁烷 (4)(均产生电子激发的丙酮)的结果进行比较,发现非常一致。在某些情况下,也可以通过测量作为温度函数的激发态寿
  • Synthesis of unstable cyclic peroxides for chemiluminescence studies
    作者:Fernando H. Bartoloni、Marcelo A. de Oliveira、Felipe A. Augusto、Luiz Francisco M. L. Ciscato、Erick L. Bastos、Wilhelm J. Baader
    DOI:10.1590/s0103-50532012001100018
    日期:——
    Cyclic four-membered ring peroxides are important high-energy intermediates in a variety of chemi and bioluminescence transformations. Specifically, α-peroxylactones (1,2-dioxetanones) have been considered as model systems for efficient firefly bioluminescence. However, the preparation of such highly unstable compounds is extremely difficult and, therefore, only few research groups have been able to
    环状四元环过氧化物是各种化学和生物发光转化中重要的高能中间体。具体而言,α-过氧内酯(1,2-二氧杂环丁烷)已被视为有效萤火虫生物发光的模型系统。但是,这种高度不稳定的化合物的制备非常困难,因此,只有很少的研究小组能够研究这些物质的性质。在这项研究中,报告了三种1,2-二氧杂环丁酮的合成,纯化和表征,并提供了已知的合成过氧化二苯甲酰的详细方法,过氧化二苯甲酰是另一种重要的化学激发电子模型。对于大多数这些过氧化物,此处首次报道了完整的光谱表征。
  • Reaction of α-Peroxy Lactones with C, N, P, and S Nucleophiles:  Adduct Formation and Nucleophile Oxidation by Nucleophilic Attack at and Biphilic Insertion into the Peroxide Bond
    作者:Waldemar Adam、Lluís Blancafort
    DOI:10.1021/jo962039l
    日期:1997.3.1
    The reactions of the alpha-peroxy lactones 1 with a variety of carbon, nitrogen, phosphorus, and sulfur nucleophiles yield, on S(N)2 attack at the more electrophilic alkoxy oxygen of the peroxide bond, diverse addition and oxygen transfer products, together with the catalytic Grob-type fragmentation. The nature of the nucleophile determines the fate of the open-chain intermediate I. Thus, protic nucleophiles such as primary and secondary amines and thiols lead to the second intermediate I' through proton shift subsequent to the S(N)2 step, while nonprotic amines and sulfides, as well as diazoalkanes, lead to oxidation products or to the cycloadducts 10-15. Trivalent phosphorus nucleophiles such as phosphines and phosphites and diisopropyl sulfoxylate prefer biphilic insertion, as documented by the fact that the nucleophilicity rather than the steric demand of these reagents controls their reactivity. The labile adducts undergo a variety of transformations to the final stable products. For protic nucleophiles, the amine adducts 5 and 6 are sufficiently persistent for isolation, whereas the sulfenic esters formed by thiol addition are further oxidized to the sulfinic esters 7 and 8 or react with excess thiol to the corresponding disulfides. For aprotic nucleophiles, the dipolar intermediates I decompose into acetone and CO2 with regeneration of the nucleophile (Grob-type fragmentation), as seen for DABCO and pyridine N-oxide, or they extrude the alpha-lactone to afford the oxygen transfer product. The corresponding ketones, pyridine N-oxide, sulfoxides, and sulfones are obtained by this route from diazoalkanes, pyridine, sulfides and sulfoxides. Additionally, the diazoalkane intermediates I also cyclize to the cycloadducts 10-12. The thermally labile phosphorus adducts 13-15, which were observed by low-temperature NMR spectroscopy, decompose to the alpha-lactone and the phosphorus oxides. Analogously, diisopropyl sulfite is obtained from the sulfoxylate adduct. As for the fate of the alpha-lactones (the reduction products of the alpha-peroxy lactones), the dimethyl derivative either oligomerizes to the oligoester 2a or is trapped by methanol as the alpha-methoxy acid 4a, while the spiroadamantyl alpha-lactone decarbonylates to adamantanone.
  • Stereoselective Cycloaddition and Epoxidation of Enol Ethers by α-Peroxy Lactone as a Function of Steric and Stereoelectronic Effects
    作者:Waldemar Adam、Lluís Blancafort
    DOI:10.1021/jo961645d
    日期:1996.1.1
    The reaction of mono- and dioxy-substituted olefins 2 with dimethyl alpha-peroxy lactone 1 affords the cycloaddition products 3 and the epoxides 4 with a high degree of stereoretention of the initial olefin configuration. Only for the pyran 2c is the ene product 5c obtained. When the reaction is run in methanol as cosolvent, additionally the trapping products 6 are observed. The S(N)2 reaction is found to be highly regioselective in all cases, as displayed by the cycloadducts 3 and the trapping products 6. The preferred reaction mode has been found to be sensitive to steric effects. The product distribution is rationalized in terms of the diastereomeric 1,4-zwitterionic epoxonium intermediates syn- and anti-C, which are proposed to arise from a side-differentiated S(N)2 attack of the enol ether double bond on the peroxide bond of the alpha-peroxy lactone 1 through a perpendicular spiro-configurated transition state geometry. When the alpha-peroxy lactone 1 approaches the enol ether 2 from the oxy-substituted side, the syn-C epoxonium intermediate is formed, which leads to the epoxide 4 after release of the corresponding alpha-lactone. The latter oligomerizes to the polyester 8 or is trapped in methanol as the alpha-methoxy acid 9. On the contrary, the anti-C epoxonium intermediate results by approach of the alpha-peroxy lactone 1 from the non-oxy-substituted side of the enol ether 2, but the electronic repulsion between the lone pairs of the epoxonium and enol ether oxygens leads by ring opening of the epoxonium species to the coiled 1,6-zwitterion (U conformation). The latter is too short-lived for stereorandomization and closes to the cycloadducts 3 under high retention of the initial enol ether configuration, but is sufficiently long-lived to be trapped in methanol stereoselectively in form of the adducts 6. These unprecedented results in the peroxide-olefin reaction are contrasted with the previously reported alpha-peroxy lactone 1 oxidation of alkenes. While the enol ethers 2 lead to the cycloadducts 3 with a high degree of stereoretention and the alkenes lead to extensive loss of the initial olefin geometry, for both trapping by methanol in form of the adducts 6 takes place, again with high stereoselectivity for the enol ethers but not for the alkenes. This mechanistic dichotomy requires different intermediates, namely, the epoxonium species C for the enol ethers and the stretched 1,6-dipole (W conformation) A for the alkenes, which both lead to the cycloadducts 3, the former by way of the coiled 1,6-dipole (U conformation) D. For the enol ethers the epoxonium intermediate C is the precursor to the epoxide, while for the alkenes an independent concerted ''butterfly'' transition state geometry B applies in the epoxidation.
  • Anomalous metalloporphyrin and chlorophyll a activated chemiluminescence of dimethyldioxetanone. Chemically initiated electron-exchange luminescence
    作者:Steven P. Schmidt、Gary B. Schuster
    DOI:10.1021/ja00543a036
    日期:1980.11
查看更多

同类化合物

全氟-1,2-二氧杂环丁烷 4-羟基甲基-3,3,4-三甲基-1,2-二氧杂环丁烷 3,3,4,4-四甲基-1,2-二氧杂环丁烷 2,2'-环二氧-2,2'-联金刚烷 1,2-二氧杂环丁烷 3-tert-butoxymethyl-3,4,4-trimethyl-1,2-dioxetane vinylidene carbonate 1,2-Dioxetan-3-one 3-methyl-3-(1-butyl)-1,2-dioxetane 3-methyl-3-ethyl-1,2-dioxetane 3-methyl-3-(1-propyl)-1,2-dioxetane 3-methyl-1,2-dioxetane trans-3,4-dimethyl-1,2-dioxetane cis-3,4-dimethyl-1,2-dioxetane cis,trans-3,4-dimethyl-1,2-dioxetane tetraethyldioxetane tetramethyldioxetane 3,3-diethyl-1,2-dioxetane 3,3-dimethyl-4-ethyl-1,2-dioxetane 3-<<(chlorosulfonyl)carbamoyloxy>methyl>-3,4,4-trimethyl-1,2-dioxetane (3,4,4-Trimethyldioxetan-3-yl)methyl acetate spiro-cyclopentyl-1,2-dioxetanone 1,4,6-Tri-tert-butyl-2,3-dioxa-5-azabicyclo[2.2.0]hex-5-ene 3,3-Di(propan-2-yl)-1,2-dioxetane 1-(4,4-dimethyl-[1,2]dioxetan-3-yl)-ethanone 3-Butyl-3,4,4-trimethyl-1,2-dioxetane (3R,4S)-3,4-Dimethoxy-1,2-dioxetane N,N-Dimethylmethanamine--1,2-dioxetane (1/1) (3S,4S)-3,4-Dibutyl-[1,2]dioxetane (3S,4S)-3,4-Dipropyl-[1,2]dioxetane trans-3,4-diethyl-1,2-dioxetane 1,3-dioxetane 3,3-Dimethyl-1,2-dioxetan 3,3-pentamethylene-1,2-dioxetane tert.-Butyl-α-peroxylacton (3-Methyl-1,2-dioxa-spiro[3.5]non-3-yl)-methanol (3R,4S)-3,4-Dipropyl-[1,2]dioxetane (3R,4S)-3,4-Dibutyl-[1,2]dioxetane trimethyl-[1,2]dioxetane cis-3.4-diethyl-1.2-dioxetane tetra(methyl-d3)-1,2-dioxetane 3,3-dimethyl-4<2-methyl-1-propenyl>-1,2-dioxetane 3-methyl-3-(2-propyl)-1,2-dioxetane 3-methyl-3-tert-butyl-1,2-dioxetane 3-(ethoxymethyl)-3,4,4-trimethyl-1,2-dioxetane cyclohexene hydroperoxide (4S)-4-(1-hydroxy-2-methylpropan-2-yl)dioxetan-3-one (4R)-4-(1-hydroxy-2-methylpropan-2-yl)dioxetan-3-one [3-(Sulfanylmethyl)-2,4-dioxabicyclo[1.1.0]butan-1-yl]methanethiol (7S)-2,2-dimethyl-1,3-dioxaspiro[3.4]oct-5-en-7-ol