摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-phenyl-pyrazine-2-carboximidic acid amide | 91091-12-2

中文名称
——
中文别名
——
英文名称
N-phenyl-pyrazine-2-carboximidic acid amide
英文别名
pyrazine-2-carbonimidic acid anilide;Pyrazin-2-carbimidsaeure-anilid;2-(N-Phenyl-guanyl)-pyrazin
<i>N</i>-phenyl-pyrazine-2-carboximidic acid amide化学式
CAS
91091-12-2
化学式
C11H10N4
mdl
——
分子量
198.227
InChiKey
YXHHCPUODDAGJK-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.91
  • 重原子数:
    15.0
  • 可旋转键数:
    2.0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    61.66
  • 氢给体数:
    2.0
  • 氢受体数:
    3.0

反应信息

  • 作为产物:
    参考文献:
    名称:
    GENERAL FORMS FOR MINIMAL SPECTRAL VALUES FOR A CLASS OF QUADRATIC PISOT NUMBERS
    摘要:
    This paper studies the spectrum that results when all height one polynomials are evaluated at a Pisot number. This continues the research theme initiated by Erdos, Joo and Komornik in 1990. Of particular interest is the minimal non-zero value of this spectrum. Formally, this value is denoted as l(1) (q), and this definition is extended to all height m polynomials asl(m)(q) := inf(\y\ : y epsilon(0) + epsilon(1)q(1) +... + epsilon(n)q(n), epsilon(i) is an element of Z, \epsilon(i)\ less than or equal to m, y not equal 0).A recent result in 2000, of Komornik, Loreti and Pedicini gives a complete description of l(m)(q) when q is the Golden ratio. This paper extends this result to include all unit quadratic Pisot numbers. A main theorem is as follows.THEOREM. Let q be a quadratic Pisot number that satisfies a polynomial of the form p(x) = x(2)-ax +/- 1 with conjugate r. Let q have convergents; {C-k/D-k} and let k be the maximal integer such that\D(k)r - C-k\ less than or equal to m 1/1 - \r\;thenl(m)(q) = \D(k)q - C-k\.A value related to l(q) is a(q), the minimal non-zero value when all +/-1 polynomials are evaluated at q. Formally, this isa(q) := inf(\y\ : y = epsilon(0) + epsilon(1)q2 + ...+ epsilon(n)q(n), epsilon(i) = +/-1, y not equal 0).An open question concerning how often a(q) = l(q) is also answered in this paper.
    DOI:
    10.1112/s0024609302001455
点击查看最新优质反应信息