Gentian Violet is a cholinesterase or acetylcholinesterase (AChE) inhibitor. A cholinesterase inhibitor (or 'anticholinesterase') suppresses the action of acetylcholinesterase. Because of its essential function, chemicals that interfere with the action of acetylcholinesterase are potent neurotoxins, causing excessive salivation and eye-watering in low doses, followed by muscle spasms and ultimately death. Nerve gases and many substances used in insecticides have been shown to act by binding a serine in the active site of acetylcholine esterase, inhibiting the enzyme completely. Acetylcholine esterase breaks down the neurotransmitter acetylcholine, which is released at nerve and muscle junctions, in order to allow the muscle or organ to relax. The result of acetylcholine esterase inhibition is that acetylcholine builds up and continues to act so that any nerve impulses are continually transmitted and muscle contractions do not stop. Among the most common acetylcholinesterase inhibitors are phosphorus-based compounds, which are designed to bind to the active site of the enzyme. The structural requirements are a phosphorus atom bearing two lipophilic groups, a leaving group (such as a halide or thiocyanate), and a terminal oxygen.
来源:Toxin and Toxin Target Database (T3DB)
毒理性
致癌物分类
对人类无致癌性(未列入国际癌症研究机构IARC清单)。
No indication of carcinogenicity to humans (not listed by IARC).
Acute exposure to cholinesterase inhibitors can cause a cholinergic crisis characterized by severe nausea/vomiting, salivation, sweating, bradycardia, hypotension, collapse, and convulsions. Increasing muscle weakness is a possibility and may result in death if respiratory muscles are involved. Accumulation of ACh at motor nerves causes overstimulation of nicotinic expression at the neuromuscular junction. When this occurs symptoms such as muscle weakness, fatigue, muscle cramps, fasciculation, and paralysis can be seen. When there is an accumulation of ACh at autonomic ganglia this causes overstimulation of nicotinic expression in the sympathetic system. Symptoms associated with this are hypertension, and hypoglycemia. Overstimulation of nicotinic acetylcholine receptors in the central nervous system, due to accumulation of ACh, results in anxiety, headache, convulsions, ataxia, depression of respiration and circulation, tremor, general weakness, and potentially coma. When there is expression of muscarinic overstimulation due to excess acetylcholine at muscarinic acetylcholine receptors symptoms of visual disturbances, tightness in chest, wheezing due to bronchoconstriction, increased bronchial secretions, increased salivation, lacrimation, sweating, peristalsis, and urination can occur. Certain reproductive effects in fertility, growth, and development for males and females have been linked specifically to organophosphate pesticide exposure. Most of the research on reproductive effects has been conducted on farmers working with pesticides and insecticdes in rural areas. In females menstrual cycle disturbances, longer pregnancies, spontaneous abortions, stillbirths, and some developmental effects in offspring have been linked to organophosphate pesticide exposure. Prenatal exposure has been linked to impaired fetal growth and development. Neurotoxic effects have also been linked to poisoning with OP pesticides causing four neurotoxic effects in humans: cholinergic syndrome, intermediate syndrome, organophosphate-induced delayed polyneuropathy (OPIDP), and chronic organophosphate-induced neuropsychiatric disorder (COPIND). These syndromes result after acute and chronic exposure to OP pesticides.
Symptoms of low dose exposure include excessive salivation and eye-watering. Acute dose symptoms include severe nausea/vomiting, salivation, sweating, bradycardia, hypotension, collapse, and convulsions. Increasing muscle weakness is a possibility and may result in death if respiratory muscles are involved. Hypertension, hypoglycemia, anxiety, headache, tremor and ataxia may also result.
A hair coloring composition comprising: (a) from about 0.0003 moles (per 100 g of composition) to less than about 0.09 moles (per 100 g of composition) of an inorganic peroxygen oxidizing agent; and (b) an oxidative hair coloring agent; wherein the pH of each of (a) and (b) is in the range of from about 1 to about 6 and wherein the combined mixture of (a) and (b) has a pH in the range of from about 1 to about 6. The products can provide excellent hair coloring and in-use efficacy benefits including excellent initial color and good wash fastness in combination with reduced hair damage at low pH.
A hair colouring and conditioning composition comprising:
(a) a hair colouring agent; and
(b) a hair conditioning agent;
wherein the composition provides an Average Combing Index Value of greater than 1.2 as measured by the Combing Technical Test Method.
The products can provide excellent hair colouring together with excellent conditioning, reduced hair damage, brittleness and dryness, and is convenient and easy to use.
Hair conditioning compositions and their use in hair colouring compositions
申请人:The Procter & Gamble Company
公开号:US20030219399A1
公开(公告)日:2003-11-27
The present invention relates to a hair care composition comprising a aminofunctional polysiloxane having a specified average effective particle size which provides improved durable conditioning particularly when utilised in conjunction with a hair colouring composition.
Enhancement of rates of reaction using neutral water/organic microemulsions as solvent media
作者:Michael J. Blandamer、John Burgess、Barbara Clark
DOI:10.1039/c39830000659
日期:——
Relative to the rate constants for reactions in aqueous solutions the rate constants for reactions involving (i) Fe(phen)32+(phen = 1,10-phenanthroline), (ii) Fe(5-NO2phen)32+, (iii) 2,4-dinitrochlorobenzene, and (iv) crystal violet with either hydroxide or cyanideions are increased markedly when two water/organic microemulsions formed from liquid components are used as reaction media; a similar though