Indium-doped zinc oxide nanocrystals (IZO NCs), capped with stearic acid (SA) of different sizes, were synthesized using a hot injection method in a noncoordinating solvent 1-octadecene (ODE). The ligand exchange process was employed to modify the surface of IZO NCs by replacing the longer-chain ligand of stearic acid with the shorter-chain ligand of butylamine (BA). It should be noted that the ligand-exchange percentage was observed to be 75%. The change of particle size, morphology, and crystal structures were obtained using a field emission scanning electron microscope (FE-SEM) and X-ray diffraction pattern results. In our study, the 5 nm and 10 nm IZO NCs capped with stearic acid (SA-IZO) were ligand-exchanged with butylamine (BA), and were then spin-coated on a thermal oxide ($SiO_2$) gate insulator to fabricate a thin film transistor (TFT) device. The films were then annealed at various temperatures: $350^\circ}C$, $400^\circ}C$, $500^\circ}C$, and $600^\circ}C$. All samples showed semiconducting behavior and exhibited n-channel TFT. Curing temperature dependent on mobility was observed. Interestingly, mobility decreases with the increasing size of NCs from 5 to 10 nm. Miller-Abrahams hopping formalism was employed to explain the hopping mechanism insight our IZO NC films. By focusing on the effect of size, different curing temperatures, electron coupling, tunneling rate, and inter-NC separation, we found that the decrease in electron mobility for larger NCs was due to smaller electronic coupling.
研究人员在非配位溶剂
1-十八烯(ODE)中采用热注入法合成了掺
铟氧化锌纳米晶体(IZO NCs),并用不同尺寸的
硬脂酸(
SA)封端。利用
配体交换工艺,将
硬脂酸的长链
配体替换为
丁胺(BA)的短链
配体,从而改变了 IZO NCs 的表面。值得注意的是,
配体交换率为 75%。利用场发射扫描电子显微镜(FE-
SEM)和 X 射线衍射图谱结果获得了粒度、形态和晶体结构的变化。在我们的研究中,
硬脂酸封端的 5 nm 和 10 nm IZO NC(
SA-IZO)与
丁胺(BA)进行
配体交换,然后旋涂在热氧化物(
$SiO_2$)栅极绝缘体上,制成薄膜晶体管(TFT)器件。然后在不同温度下对薄膜进行退火处理:
$350^\circ}C$、
$400^\circ}C$、
$500^\circ}C$和
$600^\circ}C$。所有样品都表现出半导体行为,并显示出 n 沟道 TFT。固化温度与迁移率有关。有趣的是,迁移率随着 NC 尺寸从 5 纳米到 10 纳米的增加而降低。Miller-Abrahams 跳变形式主义被用来解释我们的 IZO NC 薄膜的跳变机制。通过重点研究尺寸、不同固化温度、电子耦合、隧道速率和 NC 间分离的影响,我们发现较大 NC 的电子迁移率降低是由于电子耦合较小。