We report herein a Rh(III)-catalyzed cyclization of N-nitrosoanilines with alkynes for streamlined synthesis of indoles. The synthetic protocol features a distinct internal oxidant, N-N bond, as a reactive handle for catalyst turnover, as well as a hitherto tantalizingly elusive intermolecular redox-neutral manifold, predicated upon C-H activation, for the formation of a five-membered azaheterocycle
Palladium-Catalyzed Decarboxylative Acylation of <i>N</i>-Nitrosoanilines with α-Oxocarboxylic Acids
作者:Yinuo Wu、Lei Sun、Yunyun Chen、Qian Zhou、Jia-Wu Huang、Hui Miao、Hai-Bin Luo
DOI:10.1021/acs.joc.5b02535
日期:2016.2.5
A palladium-catalyzed oxidative C–H bond decarboxylative acylation of N-nitrosoanilines using α-oxocarboxylic acid as the acyl source is described. The catalyst Pd(OAc)2 and oxidant (NH4)2S2O8 enabled ortho-acylation of N-nitrosoanilines at room temperature, affording an array of N-nitroso-2-aminobenzophenones in moderate to excellent yields.
描述了使用α-氧代羧酸作为酰基源的钯催化的N-亚硝基苯胺的氧化C–H键脱羧酰化反应。催化剂Pd(OAc)2和氧化剂(NH 4)2 S 2 O 8可以在室温下对N-亚硝基苯胺进行邻酰化,从而以中等至极好的收率提供了一系列N-亚硝基-2-氨基二苯甲酮。
Rhodium(III)-Catalyzed <i>N</i>-Nitroso-Directed C–H Olefination of Arenes. High-Yield, Versatile Coupling under Mild Conditions
elusive substrates (e.g., an unactivatedolefin, 1-octene). Comprehensive mechanistic studies on the electronic effect, deuterium exchange, kinetic isotope effect, kinetic profile, and numerous Rh(III) complexes have established [RhCp*](2+) as the catalyst resting state, electrophilic C-H activation as the turnover-limiting step, and a five-membered rhodacycle as a catalytically competent intermediate.
Rhodium-catalyzed tandem acylmethylation/annulation of <i>N</i>-nitrosoanilines with sulfoxonium ylides for the synthesis of substituted indazole <i>N</i>-oxides
作者:Xin-Feng Cui、Guo-Sheng Huang
DOI:10.1039/d0ob00723d
日期:——
ylides through the rhodium(III)-catalyzed C–H activation and cyclization reaction is described here. This protocol employs nitroso as a traceless directing group. The transformation features powerful reactivity, tolerates various functional groups, and proceeds with moderate to good yields under an ambient atmosphere, providing a straightforward approach to access structurally diverse and valuable indazole
C–H Activation-Based Traceless Synthesis via Electrophilic Removal of a Directing Group. Rhodium(III)-Catalyzed Entry into Indoles from <i>N</i>-Nitroso and α-Diazo-β-keto Compounds
A distinct C–H activation-based traceless synthetic protocol viaelectrophilic removal of a directing group is reported, complementing the currently exclusively used nucleophilic strategy. Rh(III)-catalyzed, N-nitroso-directed C–H activation allows the development of a traceless, atom- and step-economic, cascade approach for the synthesis of indole skeletons, starting from readily available N-nitroso