摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

sodium diphenylphosphide | 4376-01-6

中文名称
——
中文别名
——
英文名称
sodium diphenylphosphide
英文别名
Natriumdiphenylphosphid;sodium;diphenylphosphanide
sodium diphenylphosphide化学式
CAS
4376-01-6
化学式
C12H10NaP
mdl
——
分子量
208.175
InChiKey
NDBSBYMJJVGVON-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.41
  • 重原子数:
    14
  • 可旋转键数:
    2
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    1

SDS

SDS:0311e0896d94aaf8599d3111bca9fb62
查看

反应信息

  • 作为反应物:
    描述:
    sodium diphenylphosphide碘代叔丁烷 作用下, 以 四氢呋喃 为溶剂, 以93%的产率得到四苯基二膦
    参考文献:
    名称:
    通过钠选择性裂解C-P键从ArCl制备有机膦的方法
    摘要:
    研究了磷化钠R 2 PNa和其他碱金属磷化物R 2 PM(M = Li和K)的制备,应用和反应机理。R 2 PNa可以通过SD(精细分散在矿物油中的钠)与次膦酸酯R 2 POR'和氯膦R 2 PC1的反应准确而选择性地制备。R 2 PNa也可以通过选择性裂解C–P键由三芳基膦和二芳基膦制备。在这些反应中,Na优于Li和K。R 2 PNa与多种ArCl反应以有效产生R 2PAr。ArCl优于ArBr和ArI,因为它们只会降低产品收率。另外,Ph 2 PNa优于Ph 2 PLi和Ph 2 PK,因为Ph 2 PLi不产生与PhCl的偶联产物,而Ph 2 PK仅产生低产率的产物。ArCl苯环上的吸电子基团极大地促进了与R 2 PNa的反应,而烷基降低了反应活性。氯乙烯和烷基氯RC1也有效地反应。当t-BuCl没有产生相应的产物,金刚烷基卤化物可以高产率得到相应的膦。通过这种方法,由相应的氯化物制备了多种膦。还可以方便地从Ph
    DOI:
    10.1021/acs.organomet.0c00295
  • 作为产物:
    描述:
    四苯基二膦sodium 作用下, 以 二丁醚 为溶剂, 反应 6.0h, 生成 sodium diphenylphosphide
    参考文献:
    名称:
    Diemert, Klaus; Hahn, Thomas; Kuchen, Wilhelm, Phosphorus, Sulfur and Silicon and the Related Elements, 1991, vol. 60, # 3/4, p. 287 - 294
    摘要:
    DOI:
  • 作为试剂:
    描述:
    6-碘-5,5-二甲基己-1-烯sodium diphenylphosphide 作用下, 以 四氢呋喃 为溶剂, 反应 0.5h, 以22%的产率得到5,5-Dimethyl-6-(diphenylphosphino)-1-hexene
    参考文献:
    名称:
    Investigation of the purity of alkali metal diphenylphosphides and their reactions with organic halides. Evidence for single electron transfer
    摘要:
    For the first time the purity of lithium, sodium, and potassium diphenylphosphide, prepared by various methods, has been evaluated using P-31 NMR spectroscopy. A method was developed to prepare each of the phosphides in a high state of purity. Highly pure potassium diphenylphosphide was then allowed to react with p-iodotoluene in order to determine the effect of purity on the S(RN)1 nature of this reaction. The results were then compared with literature reports which used less pure KPPh2. The mechanism of reaction of alkyl halides with pure alkali metal diphenylphosphides, using the radical probes 6-halo-5,5-dimethyl-1-hexenes and 1-halo-2,2-dimethylhexanes, was investigated. The results provide the first evidence to support single electron transfer (SET) in the reaction of an alkali metal diphenylphosphide with an alkyl halide. SET was found to be the major reaction pathway in the reaction of hindered alkyl iodides (neopentyl type). On the other hand, SET was found to be a minor pathway in the reaction of the corresponding alkyl bromides and chlorides with PPh2-. There was no evidence found for SET in the reactions of unhindered alkyl halides with PPh2- although SET participation cannot be rigorously excluded.
    DOI:
    10.1021/jo00073a051
点击查看最新优质反应信息

文献信息

  • Hexacarbonyl complexes of dirhenium(I) containing E2Ph4(E = P, As, or Sb) ligands; X-ray crystal structure of [Re2Br2(CO)6(Sb2Ph4)]
    作者:Ivan Bernal、James D. Korp、Fausto Calderazzo、Rinaldo Poli、Dario Vitali
    DOI:10.1039/dt9840001945
    日期:——
    The E2Ph4 complexes of rhenium(I), [Re2X2(CO)6(E2Ph4)](X = Br, E = As or Sb; X = I, E = P, As, or Sb), have been prepared by the reactions of [Re2Br2(CO)6(thf)2](thf = tetrahydrofuran) or [Re2I2(CO)8] with the appropriate E2Ph4. The crystal and molecular structure of one of the compounds, namely [Re2Br2(CO)6(Sb2Ph4)], has been solved by X-ray diffraction methods. The crystals are monoclinic, space
    2(I),[Re 2 X 2(CO)6(E 2 Ph 4)]的E 2 Ph 4配合物(X = Br,E = As或Sb; X = I,E = P,As或Sb),是通过[Re 2 Br 2(CO)6(thf)2 ](thf =四氢呋喃)或[Re 2 I 2(CO)8 ]与适当的E 2 Ph 4反应制备的。一种化合物[Re 2 Br 2(CO)6(Sb 2)的晶体和分子结构Ph 4)],已经通过X射线衍射法解决。该晶体是单斜晶系,空间群P 2 1 / Ñ,具有一个= 16.585(8),b = 22.036(13),C ^ = 19.764(19)A,β= 109.34(6)°,并ž = 8数据收集得到2 197个观察到的反射,R = 0.040。该分子由两个通过溴化物和Sb 2 Ph 4桥连接的伪八面体rh(I)中心组成。平均距离包括Re–Br 2.663(4),Sb – Br 3.640(3),Re→Re
  • The facile cyclometallation reaction of 1,3-BIS[(diphenyl-phosphino)methyl]benzene
    作者:Heinrich Rimml、Luigi M. Venanzi
    DOI:10.1016/0022-328x(83)85164-x
    日期:1983.12
    It is shown that 1,3-bis(diphenylphosphinomethyl)benzene (PCHP) readily undergoes a cyclometallation reaction with nickel(II), palladium(II), and platinum(II) species giving products of the type [MX(PCP)] [M  Ni, Pd, and Pt; X  halide and PCP  2,6-bis(diphenylphosphinomethyl)phenyl]. Cyclometallation requires the formation of intermediates trans-[MX2(PCHP)].
    结果表明,1,3-双(二苯基膦基甲基)苯(PCHP)容易与镍(II),钯(II)和铂(II)物种发生环金属化反应,得到[MX(PCP)]类型的产物[ MNi,Pd和Pt;X卤化物和PCP2,6-双(二苯基膦基甲基)苯基]。环金属化需要形成中间体反式-[MX 2(PCHP)]。
  • A Bioinspired Multicomponent Catalytic System for Converting Carbon Dioxide into Methanol Autocatalytically
    作者:Thomas M. Rayder、Enric H. Adillon、Jeffery A. Byers、Chia-Kuang Tsung
    DOI:10.1016/j.chempr.2020.04.008
    日期:2020.7
    replicate the sophisticated supramolecular assemblies used by biology for active-site separation and substrate trafficking. Here, we describe a method for multicomponent catalyst separation that involves encapsulating transition-metal complexes in nanoporous materials called metal-organic frameworks. The multicomponent catalyst system was highly active for converting hydrogen and carbon dioxide to methanol
    大自然利用多组分催化剂系统将简单,丰富的起始原料转化为生命必不可少的复杂分子。相反,合成化学转化很少采用这种策略,因为很难复制生物学用于活性位点分离和底物运输的复杂的超分子组装体。在这里,我们描述了一种用于多组分催化剂分离的方法,该方法涉及将过渡金属络合物封装在称为金属有机骨架的纳米多孔材料中。多组分催化剂体系对将氢和二氧化碳转化为甲醇具有很高的活性,可以配制为易于回收利用。此外,我们发现了只有在利用多组分催化剂策略时才可能实现的自动催化功能。
  • New Surfactant Phosphine Ligands and Platinum(II) Metallosurfactants. Influence of Metal Coordination on the Critical Micelle Concentration and Aggregation Properties
    作者:Elisabet Parera、Francesc Comelles、Ramon Barnadas、Joan Suades
    DOI:10.1021/la902459f
    日期:2010.1.19
    lower than those obtained for the free phosphines 1−3. This behavior could be understood by an analogy between the structure of cis-[PtCl2L2] complexes and bolaform surfactants. The calculated values of area per molecule also showed different tendencies between 1−3 and cis-[PtCl2L2] complexes, which could be explained on the basis of the possible conformations of these compounds in the air−water interface
    我们已经从一个新的线性表面活性剂膦Ph 2 P(CH 2)n SO 3 Na 1(n = 2),2(n = 6)和3(n = 10 )系列中制备了第一批铂(II)金属表面活性剂)},是通过卤代磺酸盐X(CH 2)n SO 3 Na与二苯基磷化钠之间的反应合成的。所述metallosurfactants顺- [氯铂酸2大号2 ](大号= 1 - 3在二甲基亚砜中,膦与PtCl 2反应后得到。所有化合物均通过常规方法NMR(1 H,13 C,31 P,195 Pt),IR,MS-ESI和HRMS}进行了全面表征。通过探索膦的表面活性剂性质1 - 3和它们各自的铂metallosurfactants顺- [氯铂酸2大号2 ](大号= 1 - 3)通过表面张力测量,动态光散射光谱和冷冻TEM显微镜,我们能够分析金属配位对临界胶束浓度(cmc)和聚集性质的影响。铂metallosurfacta
  • The AZARYPHOS Family of Ligands for Ambifunctional Catalysis: Syntheses and Use in Ruthenium-Catalyzed anti-Markovnikov Hydration of Terminal Alkynes
    作者:Lukas Hintermann、Tuan Thanh Dang、Aurélie Labonne、Thomas Kribber、Li Xiao、Pance Naumov
    DOI:10.1002/chem.200900563
    日期:2009.7.20
    others. The scalable syntheses proceed in a few steps. The incorporation of AZARYPHOS ligands (L) into complexes [RuCp(L)2(MeCN)][PF6] (Cp=cyclopentadienyl) gives catalysts for the antiMarkovnikov hydration of terminal alkynes of the highest known activities. Electronic and steric ligand effects modulate the reaction kinetics over a range of two orders of magnitude. These results highlight the importance
    引入了AZARYPHOS(氮杂-芳基-膦)膦配体家族,该膦配体在配体的外围具有膦单元和空间屏蔽的氮孤对,是通过配体球中的金属中心和氮孤对发展双官能催化的工具。已开发出通用的合成策略来合成25种结构多样的(6-芳基-2-吡啶基)膦(ARPYPHOS),(6-烷基-2-吡啶基)膦(ALPYPHOS),4,6-二取代1,3的实例-二氮杂-2-基膦或1,3,5-三嗪-2-基膦,喹唑啉基膦,喹啉基膦等。可扩展的合成过程分几步进行。将AZARYPHOS配体(L)掺入配合物[RuCp(L)2(MeCN)] [PF 6](Cp =环戊二烯基)给出了已知活性最高的末端炔烃的反马尔科夫尼科夫水合反应的催化剂。电子和空间配体效应在两个数量级的范围内调节反应动力学。这些结果突出了在通过金属及其配体发展合作性双官能催化的过程中使用结构多样的配体家族的重要性。
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐