摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

S-亚硝基-2-巯基乙基胺 | 67616-42-6

中文名称
S-亚硝基-2-巯基乙基胺
中文别名
——
英文名称
S-nitroso-2-aminoethanethiol
英文别名
S-nitrosocysteineamine;S-Nitrosocysteamine;2-nitrososulfanylethanamine
S-亚硝基-2-巯基乙基胺化学式
CAS
67616-42-6
化学式
C2H6N2OS
mdl
——
分子量
106.148
InChiKey
VNEAYYCHMUGPDK-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.8
  • 重原子数:
    6
  • 可旋转键数:
    2
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    80.8
  • 氢给体数:
    1
  • 氢受体数:
    4

SDS

SDS:44cb6935bbfdc131b01f1a0c7fef351e
查看

反应信息

  • 作为反应物:
    描述:
    S-亚硝基-2-巯基乙基胺乙二胺四乙酸sodium hydrogensulfite 作用下, 以 phosphate buffer 为溶剂, 生成 巯基乙胺
    参考文献:
    名称:
    Munro, Andrew P.; Williams, D. Lyn H., Journal of the Chemical Society. Perkin Transactions 2 (2001), 2000, # 9, p. 1794 - 1797
    摘要:
    DOI:
  • 作为产物:
    描述:
    巯基乙胺亚硝酸特丁酯溶剂黄146 作用下, 以 甲醇 为溶剂, 反应 0.17h, 生成 S-亚硝基-2-巯基乙基胺
    参考文献:
    名称:
    气相簇间巯基自由基诱导的CH键均解选择性地形成了甲基D-葡糖苷的糖C2自由基阳离子:同位素标记研究和裂解反应。
    摘要:
    一组甲基D-吡喃葡萄糖苷的同位素异构体与多级质谱实验结合使用,以确定通过最近开发的“生物启发”方法形成的糖自由基阳离子的自由基位点和裂解反应。在CID(MS2)的第一阶段,糖和S-亚硝基半胱胺[H3NCH2CH2SNO + M] +之间的质子化非共价复合物的碰撞诱导解离(CID)通过键均解释放硫代自由基,得到非共价自由基阳离子,[H3NCH2CH2S•+ M] +。该自由基阳离子复合物的CID(MS3)导致非共价复合物解离,生成糖自由基阳离子。用氘核取代所有可交换的OH和NH质子表明,糖自由基阳离子是在一个过程中形成的,该过程涉及从糖的CH键中夺取氢原子,然后将质子转移到糖中,从而形成[M-H•+ D +]。使用单个CD标记的糖对此过程进行的研究表明,H / D提取的主要位点是C2位置,因为只有C2氘标记的糖会产生占主导地位的[M-D•+ H +]产物离子。通过另一阶段的CID(MS4)研究了二糖糖基阳离子[M-H•+
    DOI:
    10.1007/s13361-017-1667-2
  • 作为试剂:
    描述:
    alpha-甲基葡萄糖甙乙酸-D3重水S-亚硝基-2-巯基乙基胺 作用下, 反应 0.25h, 生成 methyl-α-D-glucopyranoside-d4
    参考文献:
    名称:
    气相簇间巯基自由基诱导的CH键均解选择性地形成了甲基D-葡糖苷的糖C2自由基阳离子:同位素标记研究和裂解反应。
    摘要:
    一组甲基D-吡喃葡萄糖苷的同位素异构体与多级质谱实验结合使用,以确定通过最近开发的“生物启发”方法形成的糖自由基阳离子的自由基位点和裂解反应。在CID(MS2)的第一阶段,糖和S-亚硝基半胱胺[H3NCH2CH2SNO + M] +之间的质子化非共价复合物的碰撞诱导解离(CID)通过键均解释放硫代自由基,得到非共价自由基阳离子,[H3NCH2CH2S•+ M] +。该自由基阳离子复合物的CID(MS3)导致非共价复合物解离,生成糖自由基阳离子。用氘核取代所有可交换的OH和NH质子表明,糖自由基阳离子是在一个过程中形成的,该过程涉及从糖的CH键中夺取氢原子,然后将质子转移到糖中,从而形成[M-H•+ D +]。使用单个CD标记的糖对此过程进行的研究表明,H / D提取的主要位点是C2位置,因为只有C2氘标记的糖会产生占主导地位的[M-D•+ H +]产物离子。通过另一阶段的CID(MS4)研究了二糖糖基阳离子[M-H•+
    DOI:
    10.1007/s13361-017-1667-2
点击查看最新优质反应信息

文献信息

  • The mechanism of nitric oxide formation from S-nitrosothiols (thionitrites)
    作者:D. Lyn H. Williams
    DOI:10.1039/cc9960001085
    日期:——
    S-Nitrosothiols (RSNO) are easily made by electrophilic nitrosation of thiols and are a convenient source of nitric oxide. Reaction occurs readily (in many cases) in aqueous buffer at pH 7.4 to give in addition the corresponding disulfide RSSR. If oxygen is not rigorously excluded from the solution, then the nitric oxide is converted quantitatively to nitrite ion, whereas in the absence of oxygen nitric oxide can be detected using a commercial NO-probe. Reaction, however, only occurs (apart from the photochemical pathway) if Cu2+ is present. There is often enough Cu2+ in the distilled water–buffer components to bring about reaction, but decomposition is halted if Cu2+ is complexed with EDTA. Experiments with the specific Cu+ chelator neocuproine however show that the true effective reagent is Cu+, formed by reduction of Cu2+ with thiolate ion. Kinetic experiments show that the most reactive nitrosothiols are those which can coordinate bidentately with Cu+, and there is a wide range of reactivity amongst the structures studied. Reactivity is crucially dependent on the concentrations of Cu2+ and RS–.Reaction also occurs, although somewhat more slowly, if the source of copper is the CuII complex with the tripeptide diglycyl-L-histidine (GGH) or as the CuII complex with human serum albumin (HSA). This allows the possibility that nitrosothiols could in principle generate nitric oxide in vivo using the naturally occurring sources of CuII.Rapid exchange of the NO-group in RSNO with thiols occurs, again in aqueous buffer at pH 7.4. This reaction has been established as a nucleophilic substitution reaction by the thiolate ion at the nitroso nitrogen atom.The implications of these results with regard to possible involvement of nitrosothiols in vivo are discussed.
    S-亚硝基硫醇 (RSNO) 通过硫醇的电亲核亚硝化反应容易制备,并且是氮氧化物的便捷来源。在 pH 7.4 的水缓冲液中(在许多情况下),反应会迅速发生,从而生成相应的二硫化物 RSSR。如果溶液中没有严格排除氧气,则一氧化氮会定量转化为亚硝酸盐离子,而在缺氧的情况下,可以通过商业一氧化氮探针检测到一氧化氮。然而,反应仅在存在 Cu2+ 的情况下发生(除了光化学途径)。通常在蒸馏水-缓冲液成分中有足够的 Cu2+ 促使反应发生,但如果 Cu2+ 与 EDTA 形成络合物,则分解会被阻止。然而,使用特定的 Cu+ 螯合剂新铜碱(neocuproine)进行的实验表明,真正的有效试剂是 Cu+,它是通过硫醇阴离子还原 Cu2+ 形成的。动力学实验表明,反应性最强的亚硝基硫醇是那些能够与 Cu+ 形成二配位的分子,而且在所研究的结构中反应性存在广泛的变异。反应性在很大程度上依赖于 Cu2+ 和 RS– 的浓度。当铜的来源是与三肽二甘氨基-L-组氨酸 (GGH) 的 CuII 络合物或与人血清白蛋白 (HSA) 的 CuII 络合物时,反应也会发生,虽然速度较慢。这使得亚硝基硫醇在原则上能够利用天然存在的 CuII 产生体内的一氧化氮。RSNO 中 NO 基团与硫醇之间的快速交换同样发生,在 pH 7.4 的水缓冲液中进行。此反应已被确定为硫醇阴离子在亚硝基氮原子上的亲核取代反应。讨论了这些结果对于亚硝基硫醇在体内可能参与的影响。
  • Detailed mechanistic investigation into the S-nitrosation of cysteamine
    作者:Moshood K. Morakinyo、Itai Chipinda、Justin Hettick、Paul D. Siegel、Jonathan Abramson、Robert Strongin、Bice S. Martincigh、Reuben H. Simoyi
    DOI:10.1139/v2012-051
    日期:2012.9

    The nitrosation of cysteamine (H2NCH2CH2SH) to produce cysteamine-S-nitrosothiol (CANO) was studied in slightly acidic medium by using nitrous acid prepared in situ. The stoichiometry of the reaction was H2NCH2CH2SH + HNO2 → H2NCH2CH2SNO + H2O. On prolonged standing, the nitrosothiol decomposed quantitatively to yield the disulfide, cystamine: 2H2NCH2CH2SNO → H2NCH2CH2S–SCH2CH2NH2 + 2NO. NO2 and N2O3 are not the primary nitrosating agents, since their precursor (NO) was not detected during the nitrosation process. The reaction is first order in nitrous acid, thus implicating it as the major nitrosating agent in mildly acidic pH conditions. Acid catalyzes nitrosation after nitrous acid has saturated, implicating the protonated nitrous acid species, the nitrosonium cation (NO+) as a contributing nitrosating species in highly acidic environments. The acid catalysis at constant nitrous acid concentrations suggests that the nitrosonium cation nitrosates at a much higher rate than nitrous acid. Bimolecular rate constants for the nitrosation of cysteamine by nitrous acid and by the nitrosonium cation were deduced to be 17.9 ± 1.5 (mol/L)–1 s–1 and 6.7 × 104 (mol/L)–1 s–1, respectively. Both Cu(I) and Cu(II) ions were effective catalysts for the formation and decomposition of the cysteamine nitrosothiol. Cu(II) ions could catalyze the nitrosation of cysteamine in neutral conditions, whereas Cu(I) could only catalyze in acidic conditions. Transnitrosation kinetics of CANO with glutathione showed the formation of cystamine and the mixed disulfide with no formation of oxidized glutathione (GSSG). The nitrosation reaction was satisfactorily simulated by a simple reaction scheme involving eight reactions.

    将半胱氨酸胍(H2NCH2CH2>SH)硝化为半胱氨酸-S-亚硝基硫醇(CANO)在微酸性介质中进行了研究,使用现场制备的亚硝酸。反应的化学计量为 H2NCH2CH2SH + HNO2 → H2NCH2CH2SNO + H2O。经过长时间,亚硝基硫醇定量分解生成二硫化物半胱胺:2H2NCH2CH2SNO → H2NCH2CH2S–SCH2CH2NH2 + 2NO。NO2和N2O3不是主要的亚硝基化试剂,因为它们的前体(NO)在亚硝化过程中未被检测到。反应在亚硝酸中是一级反应,因此表明在微酸性pH条件下,亚硝酸是主要的亚硝基试剂。酸在亚硝酸饱和后催化亚硝化,表明在高酸性环境中,质子化的亚硝酸物种,亚硝阳离子(NO+)是一个贡献的亚硝基试剂。在恒定亚硝酸浓度下的酸催化表明,亚硝阳离子的亚硝化速率远远高于亚硝酸。通过亚硝酸和亚硝阳离子对半胱氨酸的亚硝化推导出的双分子速率常数分别为17.9 ± 1.5(mol/L)–1 s–1和6.7 × 104(mol/L)–1 s–1。Cu(I)和Cu(II)离子均对半胱氨酸亚硝基硫醇的形成和分解起到有效催化作用。Cu(II)离子可以在中性条件下催化半胱氨酸的亚硝化,而Cu(I)只能在酸性条件下催化。CANO与谷胱甘肽的转亚硝基动力学显示形成半胱胺和混合二硫醚,而不形成氧化的谷胱甘肽(GSSG)。亚硝化反应可以通过涉及八个反应的简单反应方案满意地模拟。
  • Reactivity of sulfur nucleophiles with N-methyl-N-nitroso-p-toluenesulfonamide
    作者:C. Adam、L. García-Río、J. R. Leis
    DOI:10.1039/b316200a
    日期:——
    evidenced and the nitrosation rates of the corresponding bases have been identified. Nitrosation rate constants of the different species present in the reaction medium have been determined and a Bronsted-type plot has been established giving a beta(nuc) value approximately equal to 0.08 clearly different from the values of beta(nuc) approximately equal to 0.7 obtained in the nitrosation of primary and
    在pH = 7到pH = 13的范围内,研究了亚硝基从N-甲基-N-亚硝基-对甲苯磺酰胺(MNTS)到半胱氨酸(CYS)和2-氨基乙硫醇(AET)的转移。结果清楚地表明,两个亲核试剂均通过相应的硫醇盐反应生成相应的亚硝基硫醇。动力学上已经证明存在两个(AET)或三个(CYS)宏观酸度常数,并且已经确定了相应碱基的亚硝化率。确定了反应介质中存在的不同物种的亚硝化速率常数,并建立了布朗斯台德型图,得出的β(nuc)值近似等于0.08,与获得的β(nuc)近似等于0.7的值明显不同通过MNTS亚硝化伯胺和仲胺。
  • A spectroscopic investigation of the interaction between nitrogen monoxide and copper sites of the fungal laccase from Rigidoporus lignosus
    作者:R. P. Bonomo、B. M. G. Castronovo、A. M. Santoro
    DOI:10.1039/b313630b
    日期:——
    interaction. Different magnetic parameters of the T2 site have been detected, evidencing an increase of the hyperfine coupling constant. Furthermore, the number of superhyperfine lines on the fourth line of T2 copper was also found to increase from seven in the native to nine in the NO-treated laccase, this fact implying the coordination of a nitrogenous species to the T2 site. It was also shown that
    NO与木质假单胞菌分泌的漆酶的铜中心的相互作用在有氧或无氧条件下进行了研究。始终观察到T1位置的减少,这可以通过在604 nm处的特征性光学带消失来检测(由于330 nm处的能带减少,T3可能表现出相同的行为)并且不存在其特征性EPR信号,虽然T2经历了初始的部分和短暂的减少,但它的EPR信号强度在24 h相互作用后完全恢复。已经检测到T2位点的不同磁参数,这证明了超精细耦合常数的增加。此外,还发现在T2铜的第四条线上的超超细线的数量从天然的7条增加到NO处理的漆酶中的9条,这意味着含氮物质与T2位点的配位关系。还显示亚硝酸盐可能是NO的来源,因此与NO供体分子或NO气体的行为相似,但相互作用时间更长。与T2位点协调的含氮物种可能不是2 - ,其通过NO氧化间接产生。为了理解这种相互作用的机械途径,一些实验还叠氮化物的存在下进行,研究NO与具有阻断外源配体如N的存在下其三核簇此漆酶的相互作用3
  • Equilibrium and kinetics studies of transnitrosation between S-nitrosothiols and thiols
    作者:Kun Wang、Zhong Wen、Wei Zhang、Ming Xian、Jin-Pei Cheng、Peng George Wang
    DOI:10.1016/s0960-894x(00)00688-0
    日期:2001.2
    Using UV-vis spectrometrical measurements, equilibrium constants for NO transfer between S-nitroso-N-acetyl-penicillamine (SNAP) and different thiols as well as kinetic data for NO transfer from S-nitroso bovine serum albumin (BSANO) to thiols have been obtained, NO transfer from SNAP to other primary/secondary thiols are thermodynamically favorable, whereas other S-nitrosothiols exhibit similar NO transfer potential. The obtained Gibbs free energy, enthalpy and entropy data indicated that NO transfer reactions from SNAP to four thiols are exothermic with entropy loss. The kinetic behavior of BSANO/RSH transfer can be related to both the acidity of sulfhydryl group and the electronic structure in thiol. (C) 2001 Elsevier Science Ltd. All rights reserved.
查看更多

同类化合物

(N-(2-甲基丙-2-烯-1-基)乙烷-1,2-二胺) (4-(苄氧基)-2-(哌啶-1-基)吡啶咪丁-5-基)硼酸 (11-巯基十一烷基)-,,-三甲基溴化铵 鼠立死 鹿花菌素 鲸蜡醇硫酸酯DEA盐 鲸蜡硬脂基二甲基氯化铵 鲸蜡基胺氢氟酸盐 鲸蜡基二甲胺盐酸盐 高苯丙氨醇 高箱鲀毒素 高氯酸5-(二甲氨基)-1-({(E)-[4-(二甲氨基)苯基]甲亚基}氨基)-2-甲基吡啶正离子 高氯酸2-氯-1-({(E)-[4-(二甲氨基)苯基]甲亚基}氨基)-6-甲基吡啶正离子 高氯酸2-(丙烯酰基氧基)-N,N,N-三甲基乙铵 马诺地尔 马来酸氢十八烷酯 马来酸噻吗洛尔EP杂质C 马来酸噻吗洛尔 马来酸倍他司汀 顺式环己烷-1,3-二胺盐酸盐 顺式氯化锆二乙腈 顺式吡咯烷-3,4-二醇盐酸盐 顺式双(3-甲氧基丙腈)二氯铂(II) 顺式3,4-二氟吡咯烷盐酸盐 顺式1-甲基环丙烷1,2-二腈 顺式-二氯-反式-二乙酸-氨-环己胺合铂 顺式-二抗坏血酸(外消旋-1,2-二氨基环己烷)铂(II)水合物 顺式-N,2-二甲基环己胺 顺式-4-甲氧基-环己胺盐酸盐 顺式-4-环己烯-1.2-二胺 顺式-4-氨基-2,2,2-三氟乙酸环己酯 顺式-2-甲基环己胺 顺式-2-(苯基氨基)环己醇 顺式-2-(氨基甲基)-1-苯基环丙烷羧酸盐酸盐 顺式-1,3-二氨基环戊烷 顺式-1,2-环戊烷二胺 顺式-1,2-环丁腈 顺式-1,2-双氨甲基环己烷 顺式--N,N'-二甲基-1,2-环己二胺 顺式-(R,S)-1,2-二氨基环己烷铂硫酸盐 顺式-(2-氨基-环戊基)-甲醇 顺-2-戊烯腈 顺-1,3-环己烷二胺 顺-1,3-双(氨甲基)环己烷 顺,顺-丙二腈 非那唑啉 靛酚钠盐 靛酚 霜霉威盐酸盐 霜脲氰