摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-succinyl-L-2-amino-6-oxoheptanedioate

中文名称
——
中文别名
——
英文名称
N-succinyl-L-2-amino-6-oxoheptanedioate
英文别名
(2S)-2-(3-carboxylatopropanoylamino)-6-oxoheptanedioate
N-succinyl-L-2-amino-6-oxoheptanedioate化学式
CAS
——
化学式
C11H12NO8-3
mdl
——
分子量
286.21
InChiKey
SDVXSCSNVVZWDD-LURJTMIESA-K
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.6
  • 重原子数:
    20
  • 可旋转键数:
    7
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.55
  • 拓扑面积:
    167
  • 氢给体数:
    1
  • 氢受体数:
    8

反应信息

  • 作为产物:
    描述:
    2-氧代-戊二酸离子(2-) 、 N-(3-carboxylatopropionyl)-LL-2,6-diaminopimelate(2-) 生成 N-succinyl-L-2-amino-6-oxoheptanedioate2-氨基戊二酸酯
    参考文献:
    名称:
    Characterization of a Bordetella pertussis Diaminopimelate (DAP) Biosynthesis Locus Identifies dapC , a Novel Gene Coding for an N -Succinyl- l,l -DAP Aminotransferase
    摘要:
    摘要 两种大肠杆菌的功能互补 大肠杆菌 琥珀酰化酶途径缺陷的两株大肠杆菌 中 -琥珀酰化酶途径缺陷的两株大肠杆菌 中 -DAP)生物合成途径中存在缺陷的大肠杆菌菌株与一种 百日咳杆菌 基因库中分离出一种推定的 dap 操作子,其中包含三个开放阅读框(ORF)。与大肠杆菌 dapD 大肠杆菌 dapD 和 dapE 突变体的成功互补,推导出的两个 ORF 的氨基酸序列与大肠杆菌的 DapD 和 DapE 蛋白的序列有显著的相似性。 大肠杆菌 和许多其他细菌的 DapD 和 DapE 蛋白有明显的序列相似性。 N -琥珀酰- l,l -脱琥珀酰化酶的活性。该操作子中的第一个 ORF 与转氨酶有显著的序列相似性,并含有特征性的吡哆醛-5′-磷酸结合基团。酶学研究发现,该 ORF 编码的蛋白质具有 N -琥珀酰- l,l -转氨酶活性的蛋白质。 N -琥珀酰化酶 DapD 的产物转化为 N -琥珀酰 l,l -DAP(脱琥珀酰化酶 DapE 的底物)。因此,该基因似乎编码百日咳杆菌的 DapC 蛋白。 百日咳杆菌 .除了吡哆醛-5′-磷酸结合基团外,DapC 蛋白的氨基酸序列与已知的唯一一种带有 N -琥珀酰- l,l -DAP氨基转移酶活性的唯一一种已知酶--大肠杆菌的 ArgD 大肠杆菌 .
    DOI:
    10.1128/jb.182.13.3626-3631.2000
点击查看最新优质反应信息

文献信息

  • Structure of biosynthetic N-acetylornithine aminotransferase from Salmonella typhimurium: Studies on substrate specificity and inhibitor binding
    作者:V. Rajaram、P. Ratna Prasuna、H. S. Savithri、M. R. N. Murthy
    DOI:10.1002/prot.21567
    日期:——
    complex. Comparison of sAcOAT with T. thermophilus AcOAT and human ornithine aminotransferase suggested that the higher specificity of sAcOAT towards AcOrn may not be due to specific changes in the active site residues but could result from minor conformational changes in some of them. This is the first structural report of AcOAT from a mesophilic organism and could serve as a basis for drug design as the
    乙酰基鸟氨酸基转移酶(AcOAT)是精酸代谢中的关键酶之一,在L-谷氨酸的存在下催化N-乙酰谷酸半醛向N-乙酰鸟氨酸(AcOrn)的转化。它属于ido醛5'-磷酸(PLP)依赖型酶的I型II类家族。大肠杆菌生物合成AcOAT(eAcOAT)还催化N-琥珀酰-L-2-基-6-氧酸酯转化为N-琥珀酰-L,L-二庚二酸酯,这是赖生物合成的步骤之一。鉴于AcOAT在赖酸和精生物合成中的关键作用,开始对鼠伤寒沙门氏菌(sAcOAT)的酶进行结构研究。用纯化的sAcOAT测定的K(m)和k(cat)/ K(m)值表明,该酶对AcOrn的亲和力比对鸟氨酸(Orn)的亲和力高得多,并且比eAcOAT更有效。sAcOAT被加巴胆碱(Gcn)抑制,抑制常数(K(i))为7 microM,二级速率常数(k(2))为0.16 mM(-1)s(-1)。sAcOAT以无配体形式结晶,并在Gc
  • The Dual Biosynthetic Capability of <i>N</i>-Acetylornithine Aminotransferase in Arginine and Lysine Biosynthesis
    作者:Richard Ledwidge、John S. Blanchard
    DOI:10.1021/bi982574a
    日期:1999.3.9
    The genes encoding the seven enzymes needed to synthesize L-lysine from aspartate semialdehyde and pyruvate have been identified in a number of bacterial genera, with the single exception of the dapC gene encoding the PLP-dependent N-succinyl-L,L-diaminopimelate:alpha-ketoglutarate aminotransferase (DapATase). Purification of E. coli DapATase allowed the determination of both the aminoterminal 26 amino acids and a tryptic peptide fragment. Sequence analysis identified both of these sequences as being identical to corresponding sequences from the PLP-dependent E. coli argD-encoded N-acetylornithine aminotransferase (NAcOATase). This enzyme performs a similar reaction to that of DapATase, catalyzing the N-acetylornithine-dependent transamination of alpha-ketoglutarate. PCR cloning of the argD gene from genomic E. coli DNA, expression, and purification yielded homogeneous E. coli NAcOATase. This enzyme exhibits both NAcOATase and DapATase activity, with similar specificity constants for N-acetylornithine and N-succinyl-L,L-DAP, suggesting that it can function in both lysine and arginine biosynthesis. This finding may explain why numerous investigations have failed to identify genetically the bacterial dapC locus, and suggests that this enzyme may be an attractive target for antibacterial inhibitor design due to the essential roles of these two pathways in bacteria.
  • PETERKOFSKY B.; GILVARG C., J Biol Chem, 1961, 0021-9258, 1432-8
    作者:PETERKOFSKY B.、GILVARG C.
    DOI:——
    日期:——
  • Simms S.A.; Voige W.H.; Gilvarg C., J Biol Chem, 1984, 0021-9258, 2734-41
    作者:Simms S.A.、Voige W.H.、Gilvarg C.
    DOI:——
    日期:——
  • The Three-dimensional Structure of a Mycobacterial DapD Provides Insights into DapD Diversity and Reveals Unexpected Particulars about the Enzymatic Mechanism
    作者:Linda Schuldt、Simone Weyand、Georgia Kefala、Manfred S. Weiss
    DOI:10.1016/j.jmb.2009.04.046
    日期:2009.6
    The enzyme tetrahydrodipicolinate N-succinyltransferase (DapD) is part of the L-lysine biosynthetic pathway. This pathway is crucial for the survival of the pathogen Mycobacterium tuberculosis (Mtb) and, consequently, the enzymes of the pathway are potential drug targets. We report here the crystal structures of Mtb-DapD and of Mtb-DapD in complex with the co-factor succinyl-CoA (SCoA) at 2.15 A and 1.97 A resolution, respectively. Each subunit of the trimeric enzyme consists of three domains, of which the second, a left-handed, parallel beta-helix (LbetaH domain), is the common structural motif of enzymes belonging to the hexapeptide repeat superfamily. The trimeric quaternary structure is stabilized by Mg(2+) and Na(+) located on the 3-fold axis. The binary complex of Mtb-DapD and SCoA reveals the binding mode(s) of the co-factor and a possible covalent reaction intermediate. The N-terminal domain of Mtb-DapD exhibits a unique architecture, including an interior water-filled channel, which allows access to a magnesium ion located at the 3-fold symmetry axis.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,4R)-Boc-4-环己基-吡咯烷-2-羧酸 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-N,3,3-三甲基-N-(苯甲基)丁酰胺 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S)-2-氨基-3,3-二甲基-N-2-吡啶基丁酰胺 (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,5R,6R)-5-(1-乙基丙氧基)-7-氧杂双环[4.1.0]庚-3-烯-3-羧酸乙基酯 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素(1-6) 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸