摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(5E)-5-[[6-[[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxycarbonyloxy]-1-methylquinolin-1-ium-2-yl]methylidene]-2-[(E)-[6-[[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxycarbonyloxy]-1-methylquinolin-2-ylidene]methyl]-3,4-dioxocyclopenten-1-olate | 1005495-54-4

中文名称
——
中文别名
——
英文名称
(5E)-5-[[6-[[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxycarbonyloxy]-1-methylquinolin-1-ium-2-yl]methylidene]-2-[(E)-[6-[[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxycarbonyloxy]-1-methylquinolin-2-ylidene]methyl]-3,4-dioxocyclopenten-1-olate
英文别名
——
(5E)-5-[[6-[[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxycarbonyloxy]-1-methylquinolin-1-ium-2-yl]methylidene]-2-[(E)-[6-[[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxycarbonyloxy]-1-methylquinolin-2-ylidene]methyl]-3,4-dioxocyclopenten-1-olate化学式
CAS
1005495-54-4
化学式
C83H108N2O9
mdl
——
分子量
1277.78
InChiKey
SEYSPMWLCZAVMI-HPRXFZADSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    23.3
  • 重原子数:
    94
  • 可旋转键数:
    20
  • 环数:
    13.0
  • sp3杂化的碳原子比例:
    0.63
  • 拓扑面积:
    135
  • 氢给体数:
    0
  • 氢受体数:
    10

反应信息

  • 作为产物:
    描述:
    cholesteryl N-methyl-2-quinaldinium-6-yl carbonate iodide 、 巴豆酸喹啉 作用下, 以 乙醇 为溶剂, 反应 24.0h, 以75%的产率得到(5E)-5-[[6-[[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxycarbonyloxy]-1-methylquinolin-1-ium-2-yl]methylidene]-2-[(E)-[6-[[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxycarbonyloxy]-1-methylquinolin-2-ylidene]methyl]-3,4-dioxocyclopenten-1-olate
    参考文献:
    名称:
    Infrared Absorbing Croconaine Dyes:  Synthesis and Metal Ion Binding Properties
    摘要:
    [GRAPHICS]Quinaldine-based croconaine dyes synthesized by the condensation reaction between croconic acid and the respective quinaldinium salts are described. These dyes exhibit absorption maximum in the infrared region (840-870 nm) with high molar extinction coefficients (1-5 x 10(5) M-1 cm(-1)) and have very low fluorescence quantum yields. Upon binding to divalent metal ions, these dyes were found to form complexes with a 2:1 stoichiometry having high association constants of the order of 10(11)-10(14) M-2, while the monovalent metal ions showed negligible affinity. The binding of the croconaine dye 3d with divalent metal ions especially Zn2+, Pb2+, and Cd2+ led to significant chelation-enhanced fluorescence emission. The broadening of the aromatic signals, vinylic and N-methyl protons and the negligible changes at the aliphatic region of the dye 3d in the H-1 NMR spectrum in the presence of Zn2+, indicate that the binding occurs at the carbonyl groups of the croconyl ring. The shift in the croconyl carbonyl stretching frequency in the [3d-Zn2+] complex analyzed through FT-IR analysis further confirms the involvement of two electron-rich carbonyl groups of the croconyl moiety in the complexation. These results demonstrate that the binding of the divalent metal ions at the carbonyl oxygens of these infrared absorbing dyes can be favorably utilized for the development of potential sensors for the detection of metal ions and further can be exploited as sensitizers for photodynamic therapeutic applications.
    DOI:
    10.1021/jo702209a
点击查看最新优质反应信息

文献信息

  • Infrared Absorbing Croconaine Dyes:  Synthesis and Metal Ion Binding Properties
    作者:Rekha R. Avirah、Kuthanapillil Jyothish、Danaboyina Ramaiah
    DOI:10.1021/jo702209a
    日期:2008.1.1
    [GRAPHICS]Quinaldine-based croconaine dyes synthesized by the condensation reaction between croconic acid and the respective quinaldinium salts are described. These dyes exhibit absorption maximum in the infrared region (840-870 nm) with high molar extinction coefficients (1-5 x 10(5) M-1 cm(-1)) and have very low fluorescence quantum yields. Upon binding to divalent metal ions, these dyes were found to form complexes with a 2:1 stoichiometry having high association constants of the order of 10(11)-10(14) M-2, while the monovalent metal ions showed negligible affinity. The binding of the croconaine dye 3d with divalent metal ions especially Zn2+, Pb2+, and Cd2+ led to significant chelation-enhanced fluorescence emission. The broadening of the aromatic signals, vinylic and N-methyl protons and the negligible changes at the aliphatic region of the dye 3d in the H-1 NMR spectrum in the presence of Zn2+, indicate that the binding occurs at the carbonyl groups of the croconyl ring. The shift in the croconyl carbonyl stretching frequency in the [3d-Zn2+] complex analyzed through FT-IR analysis further confirms the involvement of two electron-rich carbonyl groups of the croconyl moiety in the complexation. These results demonstrate that the binding of the divalent metal ions at the carbonyl oxygens of these infrared absorbing dyes can be favorably utilized for the development of potential sensors for the detection of metal ions and further can be exploited as sensitizers for photodynamic therapeutic applications.
查看更多