Small molecule inhibitors of STAT3 with anti-tumor activity
申请人:Turkson James
公开号:US20090069420A1
公开(公告)日:2009-03-12
The present invention concerns compounds, compositions containing these compounds, and methods of using these compounds and compositions as inhibitors of Stat3 signaling, Stat3 dimerization, Stat3-DNA binding, Stat5-DNA binding, and/or aberrant cell growth in vitro or in vivo, e.g., as anti-cancer agents for treatment of cancer, such as breast cancer. The compounds of the invention include, but are not limited to, NSC 74859 (S3I-201), NSC 42067, NSC 59263, NSC 75912, NSC 11421, NSC 91529, NSC 263435, and pharmaceutically acceptable salts and analogs of the foregoing. Other non-malignant diseases characterized by proliferation of cells that may be treated using the compounds of the invention, but are not limited to, cirrhosis of the liver; graft rejection; restenosis; and disorders characterized by a proliferation of T cells such as autoimmune diseases, e.g., type 1 diabetes, lupus and multiple sclerosis. The invention further includes an in-vitro screening test for the presence of malignant cells in a mammalian tissue; a method of identifying inhibitors of constitutive Stat3 activation, Stat3-DNA binding, Stat5-DNA binding, and/or Stat3 dimerization; and a method of identifying anti-cancer agents.
Small molecule inhibitors of stat3 with anti-tumor activity
申请人:Turkson James
公开号:US20110201576A1
公开(公告)日:2011-08-18
The present invention concerns compounds, compositions containing these compounds, and methods of using these compounds and compositions as inhibitors of Stat3 signaling, Stat3 dimerization, Stat3-DNA binding, Stat5-DNA binding, and/or aberrant cell growth in vitro or in vivo, e.g., as anti-cancer agents for treatment of cancer, such as breast cancer. The compounds of the invention include, but are not limited to, NSC 74859 (S3I-201), NSC 42067, NSC 59263, NSC 75912, NSC 11421, NSC 91529, NSC 263435, and pharmaceutically acceptable salts and analogs of the foregoing. Other non-malignant diseases characterized by proliferation of cells that may be treated using the compounds of the invention, but are not limited to, cirrhosis of the liver; graft rejection; restenosis; and disorders characterized by a proliferation of T cells such as autoimmune diseases, e.g., type 1 diabetes, lupus and multiple sclerosis. The invention further includes an in-vitro screening test for the presence of malignant cells in a mammalian tissue; a method of identifying inhibitors of constitutive Stat3 activation, Stat3-DNA binding, Stat5-DNA binding, and/or Stat3 dimerization; and a method of identifying anti-cancer agents.
SMALL MOLECULE INHIBITORS OF STAT3 WITH ANTI-TUMOR ACTIVITY
申请人:H. Lee Moffitt Cancer Center And Research Institute, Inc.
公开号:US20140329900A1
公开(公告)日:2014-11-06
The present invention concerns compounds, compositions containing these compounds, and methods of using these compounds and compositions as inhibitors of Stat3 signaling, Stat3 dimerization, Stat3-DNA binding, Stat5-DNA binding, and/or aberrant cell growth in vitro or in vivo, e.g., as anti-cancer agents for treatment of cancer, such as breast cancer. The compounds of the invention include, but are not limited to, NSC 74859 (S31-201), NSC 42067, NSC 59263, NSC 75912, NSC 11421, NSC 91529, NSC 263435, and pharmaceutically acceptable salts and analogs of the foregoing. Other non-malignant diseases characterized by proliferation of cells that may be treated using the compounds of the invention, but are not limited to, cirrhosis of the liver; graft rejection; restenosis; and disorders characterized by a proliferation of T cells such as autoimmune diseases, e.g., type 1 diabetes, lupus and multiple sclerosis. The invention further includes an in-vitro screening test for the presence of malignant cells in a mammalian tissue; a method of identifying inhibitors of constitutive Stat3 activation, Stat3-DNA binding, Stat5-DNA binding, and/or Stat3 dimerization; and a method of identifying anti-cancer agents.
Signal transducer and activator of transcription 3 (STAT3) has been elucidated as a promising target for developing anticancer drugs in gastric cancer. However, there is no FDA-approved STAT3 inhibitor yet. Herein, we report the design and synthesis of a class of STAT3 degraders based on proteolysis-targeting chimeras (PROTACs). We first synthesized an analog of the STAT3 inhibitor S3I-201 as a ligand,