Discovery and SAR of Novel and Selective Inhibitors of Urokinase Plasminogen Activator (uPA) with an Imidazo[1,2-a]pyridine Scaffold
摘要:
Urokinase plasminogen activator (uPA) is a biomarker and therapeutic target for several cancer types. Its inhibition is regarded as a promising, noncytotoxic approach in cancer therapy by blocking growth and/or metastasis of solid tumors. Earlier, we reported the modified substrate activity screening (MSAS) approach and applied it for the identification of fragments with affinity for uPA's Si pocket. Here, these fragments are transformed into a novel class of uPA inhibitors with an imidazo[1,2-a]pyridine scaffold. The SAR for uPA inhibition around this scaffold is explored, and the best compounds in the series have nanomolar uPA affinity and selectivity with respect to the related trypsin-like serine proteases (thrombin, tPA, FXa, plasmin, plasma kallikrein, trypsin, FVIIa). Finally, the approach followed for translating fragments into small molecules with a decorated scaffold architecture is conceptually straightforward and can be expected to be broadly applicable in fragment-based drug design.
Discovery and SAR of Novel and Selective Inhibitors of Urokinase Plasminogen Activator (uPA) with an Imidazo[1,2-a]pyridine Scaffold
摘要:
Urokinase plasminogen activator (uPA) is a biomarker and therapeutic target for several cancer types. Its inhibition is regarded as a promising, noncytotoxic approach in cancer therapy by blocking growth and/or metastasis of solid tumors. Earlier, we reported the modified substrate activity screening (MSAS) approach and applied it for the identification of fragments with affinity for uPA's Si pocket. Here, these fragments are transformed into a novel class of uPA inhibitors with an imidazo[1,2-a]pyridine scaffold. The SAR for uPA inhibition around this scaffold is explored, and the best compounds in the series have nanomolar uPA affinity and selectivity with respect to the related trypsin-like serine proteases (thrombin, tPA, FXa, plasmin, plasma kallikrein, trypsin, FVIIa). Finally, the approach followed for translating fragments into small molecules with a decorated scaffold architecture is conceptually straightforward and can be expected to be broadly applicable in fragment-based drug design.
Discovery and SAR of Novel and Selective Inhibitors of Urokinase Plasminogen Activator (uPA) with an Imidazo[1,2-<i>a</i>]pyridine Scaffold
作者:Rafaela Gladysz、Yves Adriaenssens、Hans De Winter、Jurgen Joossens、Anne-Marie Lambeir、Koen Augustyns、Pieter Van der Veken
DOI:10.1021/acs.jmedchem.5b01171
日期:2015.12.10
Urokinase plasminogen activator (uPA) is a biomarker and therapeutic target for several cancer types. Its inhibition is regarded as a promising, noncytotoxic approach in cancer therapy by blocking growth and/or metastasis of solid tumors. Earlier, we reported the modified substrate activity screening (MSAS) approach and applied it for the identification of fragments with affinity for uPA's Si pocket. Here, these fragments are transformed into a novel class of uPA inhibitors with an imidazo[1,2-a]pyridine scaffold. The SAR for uPA inhibition around this scaffold is explored, and the best compounds in the series have nanomolar uPA affinity and selectivity with respect to the related trypsin-like serine proteases (thrombin, tPA, FXa, plasmin, plasma kallikrein, trypsin, FVIIa). Finally, the approach followed for translating fragments into small molecules with a decorated scaffold architecture is conceptually straightforward and can be expected to be broadly applicable in fragment-based drug design.