摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

丙烯酰胺 | 79-06-1

中文名称
丙烯酰胺
中文别名
2-丙烯酰胺;丙烯酸酰胺;丙烯醯胺050-01[6];丙烯酰胺水合液;AM;丙烯酰胺单体
英文名称
2-propenamide
英文别名
acrylamid;acrylamide;prop-2-enamide
丙烯酰胺化学式
CAS
79-06-1
化学式
C3H5NO
mdl
MFCD00008032
分子量
71.0788
InChiKey
HRPVXLWXLXDGHG-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    82-86 °C(lit.)
  • 沸点:
    125 °C25 mm Hg(lit.)
  • 密度:
    1,322 g/cm3
  • 蒸气密度:
    2.45 (vs air)
  • 闪点:
    138 °C
  • 溶解度:
    水中的溶解度为2040 克/升(25°C)
  • 暴露限值:
    Potential occupational carcinogen. NIOSH REL: TWA 0.03, IDLH: 60; OSHA PEL: TWA 0.3; ACGIH TLV: TWA 0.03.
  • LogP:
    -0.9 at 20℃ and pH7
  • 物理描述:
    Acrylamide solution, [flammable liquid label] appears as a solution of a colorless crystalline solid. Flash point depends on the solvent but below 141°F. Less dense than water. Vapors heavier than air. Toxic oxides of nitrogen produced during combustion. Used for sewage and waste treatment, to make dyes and adhesives.
  • 颜色/状态:
    Flake-like crystals from benzene
  • 气味:
    Odorless
  • 蒸汽密度:
    2.45 (EPA, 1998) (Relative to Air)
  • 蒸汽压力:
    0.9 Pa (7X10-3 mm Hg) at 25 °C
  • 亨利常数:
    Henry's Law constant = 1.7X10-9 atm-cu m/mol at 25 °C (est)
  • 稳定性/保质期:
    1. 室温下稳定,但在熔融时会骤然聚合。易燃,受高热分解可释放出腐蚀性气体。紫外线照射或达到熔点温度时极易聚合并放热,也可与其他丙烯酸酯、苯乙烯和卤代乙烯等进行共聚。能进行加成、还原、解等多种反应,并与硫酸生成盐类;与甲醛反应生成N-羟甲基丙烯酰胺,在酸性催化剂的作用下可解为丙烯酸。研究疑其为致癌物,毒性较大。丙烯酰胺分子中包含酰基和双键两个活性中心。在酸或碱催化作用下容易解成相应的丙烯酸盐及丙烯酸;而双键则能参与加成反应以及聚合过程。

    2. 本品剧毒。其蒸气可通过呼吸道吸入或经皮肤吸收导致中毒,主要损害中枢神经系统,并对眼和皮肤造成强烈刺激作用。家兔急性毒性试验显示LD50为126毫克/千克。空气中最高允许浓度为0.3毫克/立方米。生产装置需密闭操作,厂房应保持良好通风条件,并要求操作人员佩戴适当的防护装备。

    3. 丙烯酰胺可通过皮肤和黏膜被人体吸收并逐渐累积,引发神经系统症状及皮肤红斑、脱皮等现象;严重时还会出现呕吐与腹痛等症状。中毒个案的肌电图和脑电图检查结果异常。职业工作场所中丙烯酰胺有毒物质的时间加权平均容许浓度为0.3毫克/立方米,短时间接触允许浓度则为0.9毫克/立方米。

    4. 稳定性:室温下稳定。

    5. 禁配物:强氧化剂、酸类及碱类物质。

    6. 应避免的条件:受热或光照。

    7. 聚合危害:易于发生聚合反应。

  • 自燃温度:
    464 °F (240 °C)
  • 分解:
    Decomposes/polymerizes above 184 °F (85 °C) with release of ammonia and hydrogen gases.
  • 粘度:
    2.71 cP at 25 °C /50% aqueous solution/
  • 汽化热:
    61.5-76.5 kJ/mol at 357-413 deg K
  • 电离电位:
    9.50 eV
  • 聚合:
    Decomposes/polymerizes above 184 °F (85 °C) with release of ammonia and hydrogen gases.
  • 相对蒸发率:
    Evaporation at 20 °C is negligible
  • 保留指数:
    1943

计算性质

  • 辛醇/水分配系数(LogP):
    -0.7
  • 重原子数:
    5
  • 可旋转键数:
    1
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    43.1
  • 氢给体数:
    1
  • 氢受体数:
    1

ADMET

代谢
丙烯酰胺主要通过尿液以结合代谢物的形式排出体外(占90至95%),尿液中出现的原化合物不到2%。少量的代谢物也存在于粪便、胆汁和其他生物基质中,但仅有少量以未改变的原形被排出。丙烯酰胺的消除是双相的,其α半衰期小于5小时,β半衰期为6至8天。
Acrylamide is primarily (90 to 95%) excreted in the urine as conjugated metabolite with less then 2% parent compound appearing in the urine. Smaller amounts of metabolites are also present in feces, bile, and other biological matrices, still with only small amounts being eliminated as unchanged parent. Acrylamide elimination is biphasic with an alpha half-life of less than 5 hours and a beta half-life of 6 to 8 days.
来源:Hazardous Substances Data Bank (HSDB)
代谢
在接触丙烯酰胺的动物中,尿液中发现的代谢物包括N-乙酰-S-(3-基-3-氧丙基)半胱酸(丙烯酰胺的N-乙酰半胱酸结合物,经过谷胱甘肽结合,在大鼠尿液中占总代谢物的67%,在小鼠尿液中占41%),N-乙酰-S-(3-基-2-羟基-3-氧丙基)半胱酸(在大鼠尿液中占16%,在小鼠尿液中占21%),N-乙酰-S-(1-基甲酰基-2-羟基乙基)半胱酸(在大鼠尿液中占9%,在小鼠尿液中占12%),环氧化物酰胺(在大鼠尿液中占6%,在小鼠尿液中占17%),2,3-二羟基丙酰胺(在大鼠尿液中占2%,在小鼠尿液中占5%),以及少量母化合物(无法量化)。
Urinary metabolites among acrylamide-exposed animals were identified as N-acetyl-S- (3-amino-3-oxopropyl) cysteine (the N-acetyl-cysteine conjugate of acrylamide, following glutathione conjugation accounting for 67% of the total urinary metabolites found in rats, 41% of the total found in mice), N-acetyl-S- (3-amino-2-hydroxy-3-oxopropyl) cysteine (16% in rats, 21% in mice), N-acetyl-S- (1-carbamoyl-2-hydroxyethyl) cysteine (9% in rats, 12% in mice), glycidamide (6% in rats, 17% in mice), 2,3-dihydroxy-propionamide (2% in rats, 5% in mice), and a small amount of the parent compound (which was not possible to quantify).
来源:Hazardous Substances Data Bank (HSDB)
代谢
在本研究中,将低剂量的丙烯酰胺(ACR;18 mg/kg)给予雄性Wistar大鼠,持续40天。采用超高效液相色谱/飞行时间质谱(UPLC-Q-TOF MS)检测ACR给药组和对照组动物的尿液样本。通过主成分分析(PCA)等多重统计分析方法,研究尿液样本中代谢物轮廓的变化,并筛选潜在的神经毒性生物标志物。PCA显示,在给药开始后20天,ACR给药组与对照组之间存在差异;在给药40天后,两组之间的分离更加明显。在给药10天后,ACR给药组尿液中4-丁酸和2-氧代精酸的平显著高于对照组(p<0.05)。受试者操作特征(ROC)曲线分析表明,4-胍基丁酸和2-氧代精氨酸是主要的代谢物。我们的结果表明,高水平的4-胍基丁酸和2-氧代精氨酸可能与ACR的神经毒性有关。因此,这些代谢物可以作为ACR暴露的敏感生物标志物,并有助于研究毒性机制。它们也可能为评估慢性低剂量ACR暴露对人类健康的影响提供科学依据。
... In the present study, a low-dose of acrylamide (ACR; 18 mg/kg) was administered to male Wistar rats for 40 days. Ultra performance liquid chromatography/time of flight mass spectrometry (UPLC-Q-TOF MS) was used to examine urine samples from ACR-dosed and control animals. Multiple statistical analyses with principal component analysis (PCA) were used to investigate metabolite profile changes in urine samples, and to screen for potential neurotoxicity biomarkers. PCA showed differences between the ACR-dosed and control groups 20 days after the start of dosing; a bigger separation between the two groups was seen after dosing for 40 days. Levels of 4-guanidinobutanoic acid and 2-oxoarginine were significantly higher in urine from the ACR-dosed group than in urine from the control group after 10 days (p<0.05). Receiver operator characteristic (ROC) curve analysis suggested that 4-guanidinobutanoic acid and 2-oxoarginine were the major metabolites. Our results suggest that high levels of 4-guanidinobutanoic acid and 2-oxoarginine may be related to ACR neurotoxicity. These metabolites could, therefore, act as sensitive biomarkers for ACR exposure and be useful for investigating toxic mechanisms. They may also provide a scientific foundation for assessing the effects of chronic low-dose ACR exposure on human health.
来源:Hazardous Substances Data Bank (HSDB)
代谢
为了研究低剂量丙烯酰胺(AA)慢性暴露的毒性效应,我们采用了一种基于超高效液相色谱/质谱(UPLC-MS)的代谢组学方法。总共40只雄性Wistar大鼠被随机分配到不同的组别:对照组、低剂量AA(0.2 mg/kg体重)、中剂量AA(1 mg/kg体重)和高剂量AA(5 mg/kg体重)。大鼠通过饮连续16周接受AA。在不同时间点收集大鼠尿液样本以测量代谢组学特征。从大鼠尿液的代谢组学特征中鉴定出13种代谢物,包括AA暴露的生物标志物(AAMA、GAMA和异构-GAMA)。与对照组相比,处理组大鼠尿液中GAMA、AAMA、异构-GAMA、乙烯乙酰甘酸、1-水杨酸葡萄糖苷、PE(20:1(11Z)/14:0)、半胱酸、L-半胱氨酸对甲酚硫酸盐和7-酮脱氧胆酸的含量显著增加,而3-乙酰胺丁醛、2-吲哚羧酸和犬尿酸的含量显著降低。值得注意的是,在本研究中发现了三种新的候选生物标志物(对甲酚硫酸盐、7-酮脱氧胆酸和1-水杨酸葡萄糖苷)在大鼠尿液中对AA暴露的反应。结果表明,AA暴露干扰了脂质和氨基酸的代谢,诱发了氧化应激。
To study the toxic effect of chronic exposure to acrylamide (AA) at low-dose levels, we applied a metabolomics approach based on ultra-performance liquid chromatography/mass spectrometry (UPLC-MS). A total of 40 male Wistar rats were randomly assigned to different groups: control, low-dose AA (0.2 mg/kg bw), middle-dose AA (1 mg/kg bw) and high-dose AA (5 mg/kg bw). The rats continuously received AA via drinking water for 16 weeks. Rat urine samples were collected at different time points for measurement of metabolomic profiles. Thirteen metabolites, including the biomarkers of AA exposure (AAMA, GAMA and iso-GAMA), were identified from the metabolomic profiles of rat urine. Compared with the control group, the treated groups showed significantly increased intensities of GAMA, AAMA, iso-GAMA, vinylacetylglycine, 1-salicylate glucuronide, PE (20:1(11Z)/14:0), cysteic acid, L-cysteine, p-cresol sulfate and 7-ketodeoxycholic acid, as well as decreased intensities of 3-acetamidobutanal, 2-indolecarboxylic acid and kynurenic acid in rat urine. Notably, three new candidate biomarkers (p-cresol sulfate, 7-ketodeoxycholic acid and 1-salicylate glucuronide) in rat urine exposed to AA have been found in this study. The results indicate exposure to AA disrupts the metabolism of lipids and amino acids, induces oxidative stress.
来源:Hazardous Substances Data Bank (HSDB)
代谢
丙烯酰胺通过口服、吸入和皮肤接触被吸收,并在体内广泛分布,倾向于在红细胞中积累。在提议的主要代谢途径中,丙烯酰胺与谷胱甘肽反应,形成S-β-丙酰胺谷胱甘肽结合物,该结合物以胱酸或N-乙酰半胱酸衍生物的形式通过尿液排出。主要的尿液代谢物(占排出剂量的48%)是N-乙酰半胱酸-S-β-丙酰胺。另外,丙烯酰胺可能被CYP2E1氧化成环氧酰胺。环氧酰胺然后继续形成类似的谷胱甘肽结合物或经历解,导致2,3-二羟基丙酰胺和2,3-二羟基丙酸的形成。
Acrylamide is absorbed following oral, inhalation, and dermal exposure and is widely distributed, tending to accumulate in the red blood cells. In the proposed major metabolic pathway acrylamide reacts with glutathione to form S-beta-propionamide glutathione conjugate which is excreted in the urine as cysteine or N-acetylcysteine derivatives. The major urinary metabolite (accounting for 48% of the excreted dose) is N-acetylcysteine-S-beta-propionamide. Alternately, acrylamide may be oxidized to glycidamide by CYP2E1. Glycidamide then goes on to form similar glutathione conjugates or undergos hydrolysis, leading to the formation of 2,3-dihydroxypropionamide and 2,3-dihydroxypropionicacid. (A635, A324, L1887)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 毒性总结
识别和使用:丙烯酰胺是一种白色结晶固体。丙烯酰胺主要用于生产各种用途的聚合物和共聚物。环境中的所有丙烯酰胺都是人为制造的,主要来源是处理或工业中使用的聚丙烯酰胺释放的单体残留物。人类暴露和毒性:丙烯酰胺具有毒性和刺激性。丙烯酰胺中毒的案例显示,由于皮肤和粘膜的刺激以及中枢、外周和自主神经系统的参与,出现局部效应的迹象和症状。皮肤或粘膜的局部刺激特征是手(掌)和脚(底)皮肤起泡和脱屑,伴有手和脚的青紫。中枢神经系统的影响特点是异常疲劳、嗜睡、记忆困难和眩晕。严重中毒时,会出现混乱、定向障碍和幻觉。躯干性共济失调是一个特征性表现,有时伴有眼球震颤和言语不清。四肢末端的过度出汗是一个常见的观察现象。中枢神经系统及局部皮肤参与的迹象可能比外周神经病提前数周。外周神经病可涉及肌腱反射消失、振动感觉障碍、其他感觉丧失和四肢外围的肌肉萎缩。神经活检显示大直径神经纤维丧失以及再生纤维。自主神经系统参与的表现为过度出汗、外周血管扩张和排尿排便困难。停止接触丙烯酰胺后,大多数病例可以恢复,尽管改善的过程是漫长的,可能延续数月至数年。目前还没有关于由于接触丙烯酰胺而导致的癌症的流行病学数据。没有证据表明人类由于丙烯酰胺暴露而导致的任何致畸效应。动物研究:在大鼠中,丙烯酰胺的生物转化通过谷胱甘肽结合和脱羧作用进行。在大鼠尿液中至少发现了4种尿液代谢物,其中鉴定出了巯基尿酸和半胱酸-S-丙酰胺。丙烯酰胺及其代谢物在神经系统组织和血液(与血红蛋白结合)中积累(蛋白质结合)。在肝脏、肾脏以及雄性生殖系统中的积累也得到了证实。在动物研究中,视觉诱发电位(VEP)的早期变化(在临床体征之前)以及体感诱发电位(SEP)的变化已被观察到。外周神经轴突的退行性变化已被描述,中枢神经系统较长纤维的变化较轻。在慢性中毒动物中观察到了普尔杰细胞的退化。这些变化在髓鞘感觉纤维的神经末梢最为明显。神经末梢显示出增大的“终末纽”和神经末梢的广泛扩大,由于神经丝的积累。这发生在外周和中枢神经系统中。在感觉纤维中发现轴突运输受损,在生化研究中观察到对糖酵解和蛋白质合成的干扰。对大鼠大脑神经递质分布和受体结合的研究揭示了丙烯酰胺诱导的变化。在大鼠中,神经递质浓度的变化和纹状体多巴胺受体结合的变化与行为变化有关。在给予大剂量丙烯酰胺的猴子中,已经观察到肾小管上皮细胞和肾小球的退行性变化以及肝脏的脂肪生成和坏死。在大鼠中,丙烯酰胺扰乱了脂质和氨基酸的代谢,诱导了氧化应激,损害了肝色素代谢。丙烯酰胺在含有或不含有代谢活化的沙门氏菌中不具有诱变性。丙烯酰胺诱导了雄性小鼠精母细胞的染色体畸变,并在有代谢活化的Balb 3T3细胞中增加了细胞转化频率。丙烯酰胺在小鼠中被证明是皮肤肿瘤的启动剂。它增加了小鼠筛选试验中肺肿瘤的发生率。在动物(猪、狗、兔子和老鼠)研究中已经证实胎儿吸收了丙烯酰胺。在大鼠妊娠第7-16天口服丙烯酰胺,减少了2周大幼崽纹状体膜中多巴胺受体的结合。在丙烯酰胺处理的雄性小鼠中已经看到了生精小管的退化和精母细胞的染色体畸变。还观察到了血浆睾酮催乳素平的降低。在长期(2年)通过饮给予丙烯酰胺后,在大鼠中观察到阴囊腔室间膜瘤的发生率有统计学意义的增加。2年的丙烯酰胺给药不仅增加了各种肿瘤类型(良性和恶性)的发生率,而且缩短了雌性和雄性大鼠的预期寿命。生态毒性研究:丙烯酰胺在C. auratus外周血细胞中具有基因毒性。鱼的暴露也产生了剂量依赖性的总DNA链断裂增加、红细胞核异常的形成以及肝细胞色素P4501A(CYP1A)和谷胱甘肽S-转移酶(GST)活性的平。丙烯酰胺可能在贻贝中诱导生殖细胞毒性。
IDENTIFICATION AND USE: Acrylamide is a white crystalline solid. Acrylamide is mainly used in the production of polymers and copolymers for various purposes. All acrylamide in the environment is man-made, the main source being the release of the monomer residues from polyacrylamide used in water treatment or in industry. HUMAN EXPOSURE AND TOXICITY: Acrylamide is toxic and an irritant. Cases of acrylamide poisoning show signs and symptoms of local effects due to irritation of the skin and mucous membranes and systemic effects due to the involvement of the central, peripheral, and autonomic nervous systems. Local irritation of the skin or mucous membranes is characterized by blistering and desquamation of the skin of the hands (palms) and feet (soles) combined with blueness of the hand and feet. Effects on the central nervous system are characterized by abnormal fatigue, sleepiness, memory difficulties, and dizziness. With severe poisoning, confusion, disorientation, and hallucinations occur. Truncal ataxia is a characteristic feature, sometimes combined with nystagmus and slurred speech. Excessive sweating in the limb extremities is a common observation. Sign of central nervous system and local skin involvement may precede peripheral neuropathy by as much as several weeks. Peripheral neuropathy can involve loss of tendon reflexes, impairment of vibration sense, loss of other sensation, and muscular wasting in peripheral parts of the extremities. Nerve biopsy shows loss of large diameter nerve fibers as well as regenerating fibers. Autonomic nervous system involvement is indicated by excessive sweating, peripheral vasodilation, and difficulties in micturition and defecation. After cessation of exposure to acrylamide, most cases recover, although the course of improvement is prolonged and can extend over months to years. There are no epidemiological data available on cancer due to exposure to acrylamide. There is no evidence in man of any teratogenic effects resulting from acrylamide exposure. ANIMAL STUDIES: In rats, biotransformation of acrylamide occurs through glutathione conjugation and through decarboxylation. At least 4 urinary metabolites have been found in rat urine, of which mercapturic acid and cysteine- S-propionamide have been identified. Acrylamide and its metabolites are accumulated (protein-bound) in both nervous system tissue and blood (hemoglobin-bound). Accumulation in the liver and kidney as well as the male reproductive system has also been demonstrated. In animal studies, early changes in visual-evoked potentials (VEP), preceding clinical signs, as well as changes in somatosensory-evoked potentials (SEP), have been seen. Degenerative changes have been described in peripheral nerve axons, with less severe changes in the longer fibers of the CNS. Degeneration of Purkinje cells has been observed in chronically-intoxicated animals. The changes are most pronounced in the nerve endings of myelinated sensory fibers. The nerve endings show enlarged "boutons terminaux" and a widespread enlargement of nerve terminals from the accumulation of neurofilaments. This occurs in both the peripheral and central nervous systems. Impairment of axonal transport has been found in sensory fibers, and interference with glycolysis and protein synthesis has been observed in biochemical studies. Studies of neurotransmitter distribution and receptor binding in the brains of rats have revealed changes induced by acrylamide. In rats, changes in the concentration of neurotransmitters and in striatal dopamine receptor binding have been related to behavioral changes. Degenerative changes in renal convoluted tubular epithelium and glomeruli and fatty generation and necrosis of the liver have been seen in monkeys given large doses of acrylamide. In rats, acrylamide disrupted the metabolism of lipids and amino acids, induced oxidative stress, impaired hepatic porphyrin metabolism. Acrylamide was not mutagenic in Salmonella typhimurium with or without metabolic activation. Acrylamide induced chromosomal aberrations in the spermatocytes of male mice and increased cell transformation frequency in Balb 3T3 cells with a metabolic activation. Acrylamide was shown to be an initiator for skin tumors in mice. It increased the incidence of lung tumors in mice-screening assays. Absorption of acrylamide by the fetus has been demonstrated in animal (pig, dog, rabbit, and rat) studies. Oral administration of acrylamide, between the 7-16th days of gestation in rats, decreased the binding of dopamine receptors in the striatal membranes in 2-week-old pups. Degeneration of seminiferous tubules and chromosome aberrations in spermatocytes has been seen in acrylamide-treated male mice. Depressed plasma levels of testosterone and prolactin have also been observed. A statistically-significant increase in the incidence of mesothelioma of the scrotal cavity was observed in rats after long-term (2-year) administration of acrylamide in the drinking-water. Administration over 2 years of acrylamide not only increased the incidence of a variety of tumor types (both benign and malignant) but also decreased the life expectancy in both male and female rats. ECOTOXICITY STUDIES: Acrylamide was genotoxic in C. auratus peripheral blood cells. The fish exposure also produced a dose-dependent increase in total DNA strand breakage, the formation of erythrocytic nuclear abnormalities and in the levels of hepatic cytochrome P4501A (CYP1A) and glutathione S-transferase (GST) activity. Acrylamide may induce gonadotoxicity in mussels.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
丙烯酰胺在长期给药时会产生中枢-周围远端轴突病。这功能上表现为单突触反射和背根电位降低,以及背根反射特性的改变。丙烯酰胺的神经毒性效应可能是由快速轴突运输的破坏引起的。认为丙烯酰胺能与驱动蛋白结合,这导致负责远端大分子输送的快速轴突运输系统受损。结果导致维持轴突结构和功能的蛋白质缺乏。丙烯酰胺还可能通过在半胱酸残基上的软亲核巯基团形成加合物,从而干扰神经末梢的一氧化氮信号。 在生殖毒性方面,数据显示丙烯酰胺诱导的雄性显性致死突变可能涉及丙烯酰胺和/或糖苷酰胺与精子蛋白或纺锤体纤维蛋白的结合以及糖苷酰胺对DNA的直接烷基化引起的断裂事件。对爬跨、精子活动和插入的负面影响也可能与丙烯酰胺结合到运动蛋白导致的远端轴突病有关。 丙烯酰胺的致癌机制可能是致突变性的,因为认为代谢物糖苷酰胺会与蛋白质和DNA反应,导致在存活体细胞中持续存在的突变并最终形成肿瘤。此外,丙烯酰胺对蛋白质上的巯基团的亲和力可能使参与DNA修复和其他关键细胞功能的蛋白质/酶失活。
Acrylamide produces a central-peripheral distal axonopathy when administered chronically. This is characterized functionally by decreases in the monosynaptic reflex and dorsal root potential and alterations in the characteristics of the dorsal root reflex. Acrylamide's neurotoxic effects may be caused by the disruption of fast axonal transport. Acrylamide is thought to bind to kinesin, which leads to impairment of the fast axonal transport system responsible for the distal delivery of macromolecules. This results in deficiencies in proteins responsible for maintaining axonal structure and function. Acrylamide may also disrupt nitric oxide signaling at nerve terminals by forming adducts with soft nucleophilic sulfhydryl groups on cysteine residues. In terms of reproductive toxicity, data suggest that acrylamide-induced male dominant lethal mutations may involve clastogenic events from binding of acrylamide and/or glycidamide to spermatid protamines or spindle fiber proteins and/or direct alkylation of DNA by glycidamide. Adverse effects on mounting, sperm motility, and intromission could also be related to distal axonopathy resulting from binding of acrylamide to motor proteins. Acrylamide's mechanism of carcinogenicity is likely mutagenic, as the metabolite glycidamide is believed to react with proteins and DNA, causing mutations that persist in viable somatic cells and resulting in tumor formation. In addition, acrylamide's affinity for binding sulfhydryl groups on proteins could inactive proteins/enzymes involved in DNA repair and other critical cell functions. (A322, L1887, A2877)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 致癌性证据
癌症分类:B2组可能的人类致癌物
Cancer Classification: Group B2 Probable Human Carcinogen
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
根据美国环保局2005年发布的致癌物风险评估指南(U.S. EPA, 2005, 086237),丙烯酰胺(AA)被认定为“很可能对人类致癌”。这一认定基于以下发现:(1)在两项生物鉴定中,F344大鼠长期通过饮暴露于AA,导致了统计学意义上显著增加的甲状腺滤泡细胞肿瘤(两性腺瘤和癌合并)、阴囊袋间皮瘤(雄性)和乳腺纤维腺瘤(雌性)的发生率;(2)通过口服、腹腔注射或皮肤暴露于AA,在SENCAR和Swiss-ICR小鼠中引发了可被TPA促进的皮肤肿瘤;(3)AA的腹腔注射在A/J小鼠品系中诱导了肺腺瘤;(4)在两项慢性F344大鼠生物鉴定中发现了中枢神经系统肿瘤;此外,还有充分证据表明AA(主要与其代谢物GA相关)能够在哺乳动物细胞中诱导多种基因毒性效应。
In accordance with the Guidelines for Carcinogen Risk Assessment (U.S. EPA, 2005, 086237), acrylamide (AA) is characterized as "likely to be carcinogenic to humans." This characterization is based on the following findings: (1) chronic oral exposure of F344 rats to AA in drinking water induced statistically significant increased incidences of thyroid follicular cell tumors (adenomas and carcinomas combined in both sexes), scrotal sac mesotheliomas (males), and mammary gland fibroadenomas (females) in two bioassays; (2) oral, i.p., or dermal exposure to AA initiated skin tumors that were promoted by TPA in SENCAR and Swiss-ICR mice; (3) i.p. injections of AA induced lung adenomas in strain A/J mice. In addition, CNS tumors were found in both of the chronic F344 rat bioassays; and (4) ample evidence for the ability of AA (primarily associated with its metabolite GA) to induce a variety of genotoxic effects in mammalian cells.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
评估:对于丙烯酰胺对人类致癌性的证据不足。对于丙烯酰胺对实验动物致癌性的证据是充分的。在做出整体评估时,工作组考虑了以下支持性证据:(1)丙烯酰胺及其代谢物环氧酰胺在大鼠和小鼠中与DNA形成共价加合物。(2)丙烯酰胺和环氧酰胺在接触过的人类和大鼠中与血红蛋白形成共价加合物。(3)丙烯酰胺在小鼠的生殖细胞中诱导基因突变和染色体畸变,在大鼠的生殖细胞中诱导染色体畸变,并在小鼠的生殖细胞中与精胺蛋白形成共价加合物。(4)丙烯酰胺在啮齿类动物的体细胞中诱导染色体畸变。(5)丙烯酰胺在体外培养的细胞中诱导基因突变和染色体畸变。(6)丙烯酰胺在小鼠细胞系中诱导细胞转化。总体评估:丙烯酰胺可能对人类具有致癌性(2A组)。
Evaluation: There is inadequate evidence in humans for the carcinogenicity of acrylamide. There is sufficient evidence in experimental animals for the carcinogenicity of acrylamide. In making the overall evaluation, the Working Group took into consideration the following supporting evidence: (1) Acrylamide and its metabolite glycidamide form covalent adducts with DNA in mice and rats. (2) Acrylamide and glycidamide form covalent adducts with hemoglobin in exposed humans and rats. (3) Acrylamide induces gene mutations and chromosomal aberrations in germ cells of mice and chromosomal aberrations in germ cells of rats and forms covalent adducts with protamines in germ cells of mice in vivo. (4) Acrylamide induces chromosomal aberrations in somatic cells of rodents in vivo. (5) Acrylamide induces gene mutations and chromosomal aberrations in cultured cells in vitro. (6) Acrylamide induces cell transformation in mouse cell lines. Overall evaluation: Acrylamide is probably carcinogenic to humans (Group 2A).
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
丙烯酰胺通过口服、皮肤、吸入和肠道外暴露(包括通过完整皮肤和粘膜)后,能很好地被吸收。这种化合物的高效吸收可以通过观察暴露后大约1小时达到峰值血药浓度来证明。据估计,人类对丙烯酰胺的消除速率仅为大鼠的五分之一。
Acrylamide is well absorbed after oral, dermal, inhalational, and parenteral exposure, including through intact skin and mucous membranes. Efficient absorption of this compound is demonstrated by the observation that peak blood concentrations occur at approximately 1 hour after exposure. It is estimated that human elimination rates of acrylamide are only one-fifth that seen in rats.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
丙烯酰胺主要通过尿液以结合代谢物的形式排出体外(占90至95%),尿液中出现的原化合物不到2%。少量的代谢物也存在于粪便、胆汁和其他生物基质中,但只有少量以未改变的原型形式被排出。丙烯酰胺的消除是双相的,其α半衰期小于5小时,β半衰期为6至8天。
Acrylamide is primarily (90 to 95%) excreted in the urine as conjugated metabolite with less then 2% parent compound appearing in the urine. Smaller amounts of metabolites are also present in feces, bile, and other biological matrices, still with only small amounts being eliminated as unchanged parent. Acrylamide elimination is biphasic with an alpha half-life of less than 5 hours and a beta half-life of 6 to 8 days.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
在大鼠静脉注射或口服0.5-100 mg/kg bw的(1-14(C))-或(2,3-14(C))丙烯酰胺后,放射性物质迅速分布到全身,没有任何组织的选择性积累。放射性物质在比格犬和小型猪的组织中也是均匀分布的。
In rats given 0.5-100 mg/kg bw of either (1-14(C))- or (2,3-14(C))acrylamide intravenously or orally, radioactivity was distributed rapidly throughout the body, with no selective accumulation in any tissue. Radioactivity was also distributed evenly among tissues of beagle dogs and miniature pigs
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
...可以通过...粘膜和肺以及消化道吸收。
... Can be absorbed through ... mucous membranes and lungs as well as the GI tract.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 职业暴露等级:
    D
  • 职业暴露限值:
    TWA: 0.03 mg/m3 [skin]
  • TSCA:
    Yes
  • 危险等级:
    6.1
  • 立即威胁生命和健康浓度:
    60 mg/m3
  • 危险品标志:
    T
  • 安全说明:
    S24,S26,S36/37,S36/37/39,S45,S53
  • 危险类别码:
    R36/38,R20/21,R43,R24/25,R22,R45,R48/20/21/22,R48/23/24/25,R62,R25,R46
  • WGK Germany:
    3
  • 海关编码:
    2924199040
  • 危险品运输编号:
    UN 3426 6.1/PG 3
  • 危险类别:
    6.1
  • RTECS号:
    AS3325000
  • 包装等级:
    III
  • 储存条件:
    1. 本品采用胶合板桶、塑料桶或纤维板桶内衬塑料袋包装,每桶20kg或25kg。储存于温度为20~30℃的阴凉干燥通风处,避免雨淋和日晒。保存期一年,并按有毒化学品规定进行运输。 2. 储存注意事项: - 存放于阴凉、通风良好的库房。 - 远离火源和热源。 - 包装必须密封,不可与空气接触。 - 应与其他化学品分开存放,尤其是避免与氧化剂、酸类、碱类及食用化学品混储。 - 不宜大量储存或长期保存。 - 配备相应的消防器材。 - 储存区应准备合适的材料以收集泄漏物。

SDS

SDS:0f6d5bd0dbd90b52ed621b584f47df7c
查看
国标编号: 61740
CAS: 79-06-1
中文名称: 丙烯酰胺
英文名称: Acrylamide
别 名:
分子式: C 3 H 5 NO;CH 2 CHCONH 2
分子量: 71.08
熔 点: 84.5℃ 沸点:125℃/3
密 度: 相对密度(=1)1.12;
蒸汽压: 0.21kPa(84.5℃)
溶解性: 溶于乙醇乙醚丙酮,不溶于苯
稳定性: 稳定
外观与性状: 白色结晶固体,无气味
危险标记: 15(毒害品)
用 途: 用于制造溶性聚合物即聚丙烯酰胺

2.对环境的影响:
一、健康危害

侵入途径:吸入、食入、经皮吸收。
健康危害:本品具神经毒作用。可引起疲嗜睡、手指麻木,位置性震颤,步态紊乱,肌肉萎缩,肌肉无力,手出汗脱屑以及接触性皮炎等。

二、毒理学资料及环境行为

毒性:中等毒类。
急性毒性:LD50 150~180mg/kg(大鼠经口)
刺激性:家兔经眼:5mg(24小时),重度刺激。
亚急性和慢性毒性:大鼠经口食物中添加0.02%~0.04%本品,1~6个月,出现末梢神经,神经轴突、髓膜变性。
致突变性:姊妹染色单体交换:大鼠经口600mg/kg,10天(连续)。精子形态学改变:小鼠腹腔注射100mg/kg。
生殖毒性:大鼠经口最低中毒剂量(TDL0):200mg/kg(孕7~16天),引起新生鼠生化和代谢改变。大鼠经口最低中毒剂量(TDL0):544mg/kg(9周,雄性),引起精子、雄性生育指数改变和植入后死亡率增加。
致癌性:IARC致癌性评论:动物阳性。

危险特性:遇高热、明火或与氧化剂接触,有引起燃烧的危险。若遇高热,可能发生聚合反应,出现大量放热现象,引起容器破裂和爆炸事故。
燃烧(分解)产物:一氧化碳二氧化碳


3.现场应急监测方法:



4.实验室监测方法:
气相色谱法 《质分析大全》 张宏陶等主编
气相色谱法《固体废弃物试验与分析评价手册》中国环境监测总站等译
色谱-质谱法 《和废标准检验法》第19版译文,江苏省环境监测中心


5.环境标准:
前苏联(1975)车间卫生标准 0.3mg/m3
中国(待颁布) 饮用中有害物质的最高容许浓度 0.0005mg/L


6.应急处理处置方法:
一、泄漏应急处理

隔离泄漏污染区,周围设警告标志,建议应急处理人员戴好防毒面具,穿化学防护服。不要直接接触泄漏物,用洁清的铲子收集于干燥净洁有盖的容器中,运至废物处理场所。也可以用大量冲洗,经稀释的洗放入废系统。如大量泄漏,收集回收或无害处理后废弃。
废弃物处置方法:用焚烧法。焚烧炉排出的氮氧化物通过洗涤器除去。

二、防护措施

呼吸系统防护:空气中浓度超标时,应该佩带防毒面具。紧急事态抢救或逃生时,佩带自给式呼吸器。
眼睛防护:必要时戴安全防护眼镜。
防护服:穿相应的防护服。
手防护:戴防化学品手套。
其它:工作现场禁止吸烟、进食和饮。工作后,彻底清洗。单独存放被毒物污染的衣服,洗后再用。进行就业前和定期的体检。

三、急救措施

皮肤接触:脱去污染的衣着,用肥皂及清彻底冲洗。
眼睛接触:立即提起眼睑,用流动清冲洗。
吸入:脱离现场至空气新鲜处。必要时进行人工呼吸。就医。
食入:误服者给饮大量温,催吐。就医。

灭火方法:二氧化碳、干粉、砂土。





制备方法与用途

根据提供的信息,丙烯酰胺是一种重要的化工原料和中间体。以下是关于丙烯酰胺的几个关键点:

主要用途:
  1. 制备聚丙烯酰胺及其系列产品:用于生产絮凝剂、土壤改良剂、增强纸张强度等。
  2. 化学灌浆物质:可用于石油开采中提高油井产量。
  3. 涂料和胶粘剂:作为基础原料之一。
  4. 电泳测定蛋白质分子量:在生物学研究中,常用于制备凝胶进行分离和鉴定。
生产方法:
  1. 丙烯腈硫酸合法
  2. 丙烯腈直接合法
    • 催化剂的作用下,在特定条件下直接进行合反应,产物可以直接作为产品销售。
  3. 酶催化法
    • 采用固定床反应器在室温下进行反应,可获得较高转化率和选择性。
特殊性质与安全注意事项:
  • 毒性分级:高毒;
  • 急性毒性数据:经口对大鼠、小鼠的半致死剂量分别为124毫克/公斤和107毫克/公斤。
  • 皮肤刺激:兔子500毫克/天,轻度刺激;眼睛刺激100毫克/天,中度刺激。
  • 燃烧与爆炸危险性:明火可燃,受热分解生成有毒氮氧化物烟雾。因此需要库房通风、低温干燥,并且要与其他化学品分开存放。
职业卫生标准:
  • 时间加权平均容许浓度(TWA): 0.3毫克/立方米。
  • 短时间接触极限( STEL ): 0.9毫克/立方米。
灭火方法:
  • 使用雾状、泡沫或二氧化碳灭火;也可采用砂土进行覆盖。

以上信息为丙烯酰胺的基本介绍,包括其用途、生产方法及安全与健康方面的注意事项。在实际使用过程中应严格遵守相关规范以确保安全和环境友好性。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    丙烯酰胺二苯基硅烷 、 FeH(PMe3)2(SiPh(NCH2PPh2)2C6H4) 作用下, 以 1,4-二氧六环 为溶剂, 反应 24.0h, 以75%的产率得到丙烯腈
    参考文献:
    名称:
    空气稳定的N杂环[PSiP] cer式氢化铁和类似的氮氢化铁:伯酰胺的合成和催化脱水成腈
    摘要:
    通过Si-H活化Ph取代的[PSiP]钳子,合成了一种空气稳定的N杂环PSiP钳子氢化铁FeH(PMe 3)2(SiPh(NCH 2 PPh 2)2 C 6 H 4)(4)配体。制备了类似的强供电子i Pr取代[PSiP]钳形配体,并将其引入铁络合物中,得到铁氮络合物FeH(N 2)(PMe 3)(SiPh(NCH 2 P i Pr 2)2 C 6 H 4)(6)。都图4和图6显示了伯酰胺催化脱水成腈的相似的高效率。空气稳定的氢化铁4是稳定和方便制备的最佳催化剂。以中等至优异的产率获得了包括芳族和脂族物质在内的各种氰基化合物。提出了合理的催化反应机理。
    DOI:
    10.1021/acs.organomet.9b00880
  • 作为产物:
    描述:
    丙烯醛 在 choline chloride * 2ZnCl2 、 盐酸羟胺 作用下, 反应 15.0h, 以91%的产率得到丙烯酰胺
    参考文献:
    名称:
    Choline chloride based eutectic solvent: an efficient and reusable solvent system for the synthesis of primary amides from aldehydes and from nitriles
    摘要:
    氯化胆碱:一种基于2ZnCl2的深共熔溶剂被发现是一种简单、绿色、高效且新颖的溶剂体系,用于从醛制备伯酰胺。同样的催化体系也适用于从腈制备酰胺。在这两种转化中,均获得了良好至优异产率的伯酰胺。
    DOI:
    10.1039/c3ra43552k
  • 作为试剂:
    描述:
    反式肉桂醛一氯丙酮丙烯酰胺三苯基膦 作用下, 以 丙醇 为溶剂, 反应 9.0h, 以57%的产率得到(E,E)-6-phenyl-3,5-hexadien-2-one
    参考文献:
    名称:
    通过膦介导的醛,α-卤代羰基化合物和末端烯烃的三组分体系立体选择性合成多取代的烯烃。
    摘要:
    几何控制:PPh 3和丙烯酸甲酯(或丙烯酰胺)能够介导醛与α-卤代羰基化合物的单锅Wittig反应,以出色的立体选择性方式合成1,2-二取代和三取代的烯烃。此外,在PPh 3的存在下,醛,α-卤代乙酸盐和末端烯烃的第一个单锅,三组分反应已经开发出来,可生产具有出色E选择性的三取代烯烃(参见方案)。
    DOI:
    10.1002/chem.200900177
点击查看最新优质反应信息

文献信息

  • [EN] AMINE-LINKED C3-GLUTARIMIDE DEGRONIMERS FOR TARGET PROTEIN DEGRADATION<br/>[FR] DÉGRONIMÈRES DE C3-GLUTARIMIDE LIÉS À UNE AMINE POUR LA DÉGRADATION DE PROTÉINES CIBLES
    申请人:C4 THERAPEUTICS INC
    公开号:WO2017197051A1
    公开(公告)日:2017-11-16
    This invention provides amine-linked C3-glutarimide Degronimers and Degrons for therapeutic applications as described further herein, and methods of use and compositions thereof as well as methods for their preparation.
    这项发明提供了胺连接的C3-戊二酰亚胺Degronimers和Degrons,用于治疗应用,如本文进一步描述的,以及它们的使用方法、组合物以及它们的制备方法。
  • 一种β-羟亚胺硝基类化合物的合成新方法
    申请人:信阳师范学院
    公开号:CN108863843A
    公开(公告)日:2018-11-23
    本发明公开了一种β‑羟亚胺硝基类化合物的合成新方法,具体为:将具有结构(I)的烯烃和结构(II)的亚硝酸酯分散在溶剂中,向上述混合物中加入适量的,在惰性气体保护下通过加热反应即可得到具有结构(III)的β‑羟亚胺硝基类化合物:III的具体结构为:本发明提供了一种烯烃和叔丁基亚硝酸酯作为反应的起始原料,通过与作用来合成目标β‑羟亚胺硝基类化合物的新方法。该方法以叔丁基亚硝酸酯作为双重氮源,作为氧源,不需要添额外的氧化剂和添加剂,直接通过在溶剂中搅拌加热即可实现目标物的构建。此方法具有条件温和、操作简单,产物多样性、可以实现大规模生产等优势。
  • An efficient and heterogeneous recyclable palladium catalyst for chemoselective conjugate reduction of α,β-unsaturated carbonyls in aqueous medium
    作者:Dattatraya B. Bagal、Ziyauddin S. Qureshi、Kishor P. Dhake、Shoeb R. Khan、Bhalchandra M. Bhanage
    DOI:10.1039/c1gc15050b
    日期:——
    An highly efficient PS-Pd-NHC catalytic system has been developed for chemoselective conjugate reduction of α,β-unsaturated carbonyl compounds providing good to excellent conversion with remarkable chemoselectivity (up to 100%). The developed protocol is more advantageous due to use of HCOONa as hydrogen source, environmentally benign water as solvent and effective catalyst recyclability.
    开发了一种高效的PS-Pd-NHC催化系统,用于选择性共轭还原α,β-不饱和羰基化合物,提供了从良好到优异的转化率,具有显著的选择性(高达100%)。由于使用甲酸钠作为氢源,环境友好的作为溶剂,以及有效的催化剂可回收性,该开发方案更具优势。
  • Transition metal-free catalytic reduction of primary amides using an abnormal NHC based potassium complex: integrating nucleophilicity with Lewis acidic activation
    作者:Mrinal Bhunia、Sumeet Ranjan Sahoo、Arpan Das、Jasimuddin Ahmed、Sreejyothi P.、Swadhin K. Mandal
    DOI:10.1039/c9sc05953a
    日期:——
    potassium complex was used as a transition metal-free catalyst for reduction of primary amides to corresponding primary amines under ambient conditions. Only 2 mol% loading of the catalyst exhibits a broad substrate scope including aromatic, aliphatic and heterocyclic primary amides with excellent functional group tolerance. This method was applicable for reduction of chiral amides and utilized for the synthesis
    异常的基于N-杂环卡宾(aNHC)的络合物用作无过渡属的催化剂,用于在环境条件下将伯酰胺还原为相应的伯胺。仅催化剂的2mol%负载显示出广泛的底物范围,包括具有优异的官能团耐受性的芳族,脂族和杂环伯酰胺。该方法适用于手性酰胺的还原,并用于克级的药学上有价值的前体的合成。在机理研究过程中,通过光谱技术分离和表征了几种中间体,并且通过单晶XRD表征了一种催化中间体。定义明确的催化剂和可分离的中间体,以及一些化学计量的原位实验 NMR实验和DFT研究帮助我们勾画出了该还原过程的机理途径,从而揭示了催化剂的双重作用,包括aNHC的亲核活化以及K离子的Lewis酸性活化。
  • Ruthenium-Catalyzed Oxidative Cross-Coupling Reaction of Activated Olefins with Vinyl Boronates for the Synthesis of (<i>E</i>,<i>E</i>)-1,3-Dienes
    作者:Dattatraya H. Dethe、Nagabhushana C. Beeralingappa、Amar Uike
    DOI:10.1021/acs.joc.0c02823
    日期:2021.2.19
    An oxidative cross-coupling reaction between activated olefins and vinyl boronate derivatives has been developed for the highly stereoselective construction of synthetically useful (E,E)-1,3-dienes. The highlight of this reaction is that exclusive stereoselectivity (only E,E-isomer) was achieved from a base-free, ligand-free, and mild catalytic condition with a less expensive [RuCl2(p-cymene)]2 catalyst
    已经开发出活化烯烃和乙烯基硼酸酯生物之间的氧化交叉偶联反应,以用于合成有用的(E,E)-1,3-二烯的高度立体选择性的结构。该反应的亮点在于,使用便宜的[RuCl 2(p- Cymene)] 2催化剂,可从无碱,无配体和温和的催化条件下获得独特的立体选择性(仅E,E-异构体)。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
hnmr
mass
cnmr
ir
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台