Reaction products of lyotropic liquid crystal salt complexes
申请人:——
公开号:US05595683A1
公开(公告)日:1997-01-21
The invention provides novel polymeric and non-polymeric, liquid crystal type, chemical salt complexes of aroyl acids and monovalent and polyvalent metals. They are formed by covalent and coordinate bonding for use as electrical superconductors, as electrolytes in alkali metal batteries, electrochromic windows, static dissipative polymers, etc. The invention also provides processes for manufacturing such complexes, including the in situ formation in and on various metals and oxides. The processes also include the use of supercritical solvents such as carbon dioxide to solubilize the complexes for introduction into plastics and inorganic superconductors. The chemical complexes include the triads formed of liquid crystal aroyl salts, non-polymeric ligand solvents, and polymeric aroylacrylate salts. Both homopolymer and copolymer complexes of the metal aroylacrylates may be prepared and the latter may be cross-linked. Novel covalent, liquid crystal, reaction product complexes of lyotropic liquid crystal, metal aroylacrylate complexes and isocyanates (both polymeric and non-polymeric) are prepared. These are dyes having a high degree of conjugated unsaturation. Solutions of the reaction products of monovalent and polyvalent metal complexes can be prepared. Excess ligand solvent; used in preparing these materials can be vaporized in a controlled way to produce liquid crystal systems. These systems can be cross-linked. Supercritical fluids such as carbon dioxide can be used to dissolve these various complexes and allow their distribution into both plastic particles and powdered inorganic superconductors so as to distribute complexes uniformly throughout the particles so as to enhance properties such as electrical conductivity when the particles are formed into larger systems.
Optical and capacitance type, phase transition, humidity-responsive
申请人:——
公开号:US04975249A1
公开(公告)日:1990-12-04
The invention provides novel chemical compositions for use in primary, optical/capacitance hygrometric devices. It also provides methods for using these compositions as sensors for the precise measurements of the humidity of gases as well as the apparatus. The chemical compositions, which of themselves sense the change in water vapor pressure, are birefringent, translucent, and anisotropic at a first water vapor pressure/temperature, but non-birefringent, optically clear, and isotropic at a second vapor pressure/temperature. Optical changes which accompany these phase changes may be amplified. Some compositions, exhibit abrupt and large increases in their dielectric constant coincident with the optical changes which occur at the phase shift point. Others show a large and precisely linear change in dielectric constant over many decades of relative humidity (RH), but the optical shift occurs at a precise point within the range. By noting the capacitance readout from a prestandardized combination optical/capacitance hygrometric device at the moment of optically indicated phase shift (when the system changes from isotropic to birefringent), any drift in the electronics of the device can be immediately detected since the sensor's phase shift point is invariant. If it is desired to eliminate polarizer amplifiers because of their cost, sensor substrates can be shaped so that internal reflection within the substrate and optical coupling of the birefringent sensor to the substrate generate excellent optical signals at the sensor's trigger points. The devices and methods of the new hygrometry allow many variations on the primary requirements. If desire, the sensor can be made an integral part of a capacitance-sensitive IC.
The invention provides novel chemical complexation products for use as superconductors, polymer electrolytes for alkali metal batteries, electrolytes for electrochromic windows, static dissipative plastics, etc. It also provides for manufacturing such complexation products. The complexation products may comprise (a) lyotropic liquid crystal salts ordinarily insoluble in anhydrous, aprotic, ligand-type solvents, (b) non-polymeric ligand-type solvents containing the NCO group, (c) polymeric-type ligands containing repetitive, oxygen-bearing groups along a substantially linear chain, and (d) from 1% to 98% by weight of inorganic compounds of high surface area. The complexation and solubilization can be carried out so as to secure liquids or low viscosity pastes by heating and mixing the components in appropriate ratios. Or the components can be fluxed in a Banbury mixer or its equivalent at an elevated temperature using limited quantities of a non-polymeric, ligand-type solvent so that the final product is a solid. Vacuum processing can be used to degas these systems and insure superb wetting. Formed shapes of the products can be heated so as to remove additional non-polymeric, ligand-type solvents where desired. Depending on the inorganic compound of high surface area selected and its concentration in the final product, enhanced yield value, enhanced and stabilized superconductivity, improved abrasion resistance, and other desirable features may be secured. As an alternate mode of preparing liquid or paste compositions, the solid salt complexes can be complexed and fluidized by heating with liquid polymers such as polyethelene glycol and inorganic compounds of high surface area.
Kloosterman, M.; Nijs, M. P. de; Boom, J. H. van, Recueil des Travaux Chimiques des Pays-Bas, 1985, vol. 104, p. 126 - 128
作者:Kloosterman, M.、Nijs, M. P. de、Boom, J. H. van
DOI:——
日期:——
Chemical synthesis of 13C-labelled ganglioside Gb3 trisaccharide from [U-13C]-D-glucose
作者:Hiroki Shimizu、Jonathan M Brown、Steven W Homans、Robert A Field
DOI:10.1016/s0040-4020(98)00577-8
日期:1998.8
glycolipid binding domain of the toxin with its natural ligand, ganglioside Gb3 (Galα1 →4Galβ1 →4Glcβ1 →Cer), remain to be confirmed. To this end we now report the synthesis of the (2-trimethylsilyl)ethyl glycoside of the Gb3 trisaccharide in isotopically enriched form from [U-13C]-D-glucose.