作者:Cara A. Griffiths、Ram Sagar、Yiqun Geng、Lucia F. Primavesi、Mitul K. Patel、Melissa K. Passarelli、Ian S. Gilmore、Rory T. Steven、Josephine Bunch、Matthew J. Paul、Benjamin G. Davis
DOI:10.1038/nature20591
日期:2016.12
Treatment with signalling precursors of trehalose-6-phosphate allows light-triggered release of trehalose-6-phosphate in Arabidopsis thaliana and increases the yield and drought resistance of spring wheat (Triticum aestivum). These authors present an alternative to the use of genetically modified (GM) crops to boost crop yield. Benjamin Davis and colleagues sprayed growing plants with signalling precursors of trehalose-6-phosphate (T6P). Uptake of the T6P analogues is triggered by sunlight, leading to T6P release in Arabidopsis thaliana, and increased yield and drought resistance in spring wheat (Triticum aestivum). The availability of chemical treatments of this type could be of particular importance in countries where GM crops are not widely accepted. The pressing global issue of food insecurity due to population growth, diminishing land and variable climate can only be addressed in agriculture by improving both maximum crop yield potential and resilience1,2. Genetic modification is one potential solution, but has yet to achieve worldwide acceptance, particularly for crops such as wheat3. Trehalose-6-phosphate (T6P), a central sugar signal in plants, regulates sucrose use and allocation, underpinning crop growth and development4,5. Here we show that application of a chemical intervention strategy directly modulates T6P levels in planta. Plant-permeable analogues of T6P were designed and constructed based on a âsignalling-precursorâ concept for permeability, ready uptake and sunlight-triggered release of T6P in planta. We show that chemical intervention in a potent sugar signal increases grain yield, whereas application to vegetative tissue improves recovery and resurrection from drought. This technology offers a means to combine increases in yield with crop stress resilience. Given the generality of the T6P pathway in plants and other small-molecule signals in biology, these studies suggest that suitable synthetic exogenous small-molecule signal precursors can be used to directly enhance plant performance and perhaps other organism function.
用6-磷酸脱卤糖的信号前体处理拟南芥,可使其在光照触发下释放6-磷酸脱卤糖,从而提高春小麦(Triticum aestivum)的产量和抗旱性。这些作者提出了一种替代使用转基因作物提高作物产量的方法。本杰明-戴维斯及其同事向生长中的植物喷洒了6-磷酸三卤糖的信号前体(T6P)。阳光会触发对 T6P 类似物的吸收,从而导致拟南芥释放 T6P,并提高春小麦(Triticum aestivum)的产量和抗旱性。在转基因作物尚未被广泛接受的国家,这类化学处理方法的可用性尤为重要。由于人口增长、土地减少和气候多变,全球面临着粮食不安全的紧迫问题,农业只能通过提高作物的最大产量潜力和抗逆性来解决这一问题1,2。转基因是一种潜在的解决方案,但尚未得到全世界的认可,尤其是小麦等作物3。6-磷酸脱卤糖(T6P)是植物体内的核心糖信号,它调节蔗糖的使用和分配,是作物生长和发育的基础4,5。在这里,我们展示了一种化学干预策略可直接调节植物体内的 T6P 水平。根据 "信号-前体 "概念,我们设计并构建了T6P的植物渗透性类似物,用于植物体内T6P的渗透、随时吸收和阳光触发释放。我们的研究表明,对强效糖信号的化学干预能提高谷物产量,而对植物组织的应用则能改善干旱后的恢复和复活。这项技术提供了一种将增产与作物抗逆性相结合的方法。鉴于 T6P 通路在植物中的普遍性以及生物学中其他小分子信号的普遍性,这些研究表明,合适的合成外源小分子信号前体可用于直接提高植物的性能,或许还能提高其他生物体的功能。