Fluorescence Enhancement of <i>trans</i>-4-Aminostilbene by <i>N</i>-Phenyl Substitutions: The “Amino Conjugation Effect”
作者:Jye-Shane Yang、Shih-Yi Chiou、Kang-Ling Liau
DOI:10.1021/ja016416+
日期:2002.3.1
The synthesis, structure, and photochemical behavior of the trans isomers of 4-(N-phenylamino)stilbene (1c), 4-(A methyl-N-phenylamino)stilbene (1d), 4-(NN-diphenylamino)stilbene (le), and 4-(N-(2,6dimethylphenyl)amino)stilbene (1f) are reported and compared to that of 4-aminostilbene (1a) and 4-N,N-dimethylaminostilbene (1b). Results for the corresponding 3-styrylpyridine (2) and 2-styrylnaphthalene analogues (3) are also included. The introduction of N-phenyl substituents to 4-aminostilbenes leads to a more planar ground-state geometry about the nitrogen atom, a red shift of the absorption and fluorescence spectra, and a less distorted structure with a larger charge-transfer character for the fluorescent excited state. Consequently, the N-phenyl derivatives 1c-e have low photoisomerization quantum yields and high fluorescence quantum yields at room temperature, in contrast to the behavior of la, 1b, and most unconstrained monosubstituted trans-stilbenes. The isomerization of 1c and 1d is a singlet-state process, whereas it is a triplet-state process for le, presumably due to a relatively higher singlet-state torsional barrier. The excited-state behavior of 1f resembles 1a and 1b instead of 1c-e as a consequence of the less planar amine geometry and weaker orbital interactions between the N-phenyl and the aminostilbene groups. Such an N-phenyl substituent effect is also found for 2 and 3 and thus appears to be general for stilbenoid systems. The nature of this effect can be described as an ''amino conjugation effect''.