摘要:
Tissue deterioration and aging have long been associated with the accumulation of chemically induced protein and DNA damage. Reactive oxygen species (ROS) and reactive carbonyl species (RCS), especially alpha-dicarbonyl compounds, are key mediators of damage caused by oxidative stress, glycation, and UV-irradiation. The toxic effects of ROS are counteracted in vivo by antioxidants and antioxidant enzymes, and the deleterious effects of one RCS, methylglyoxal, are counteracted by a ubiquitous glyoxalase system. Carbonyl stress as a result of toxic effects of various mono-dicarbonyls (e.g. 4-hydroxynonenal) and alpha-dicarbonyls (e.g. glyoxal and deoxyosones) cannot be directly antagonized by antioxidants, and only a small number of biological carbonyl scavengers like glutathione (GSH) have been identified to date. We have developed a new screening method for the identification of carbonyl scavengers using a rapid glycation system that proceeds independent of oxygen and therefore, excludes identification of inhibitory compounds acting as antioxidants. Using this screening assay adapted to 96-well microtiter plates, we have identified the cysteine derivative 3,3,3-dimethyl-D-cysteine as a potent inhibitor of non-oxidative advanced glycation. Comparative kinetic analyses demonstrated the superior alpha-oxoaldchyde-scavenging activity Of D-penicillamine over that of aminoguanidine. D-Penicillamine traps alpha-oxoaldehydes by forming a 2-acylthiazolidine derivative as shown by structure elucidation of reaction products between D-penicillamine and methylglyoxal or phenylglyoxal, We demonstrated that upon co-incubation, D-penicillamine protects human skin keratinocytes and fibroblasts (CF3 cells) against glyoxal- and methylglyoxal-induced carbonyl toxicity. Our research qualifies alpha-amino-beta-mercapto-beta,beta-dimethyl-ethane as a promising pharmacophore for the development of related alpha-dicarbonyl scavengers as therapeutic agents to protect cells against carbonyl stress. (C) 2002 Published by Elsevier Science Inc.