摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

S-(3-hydroxypropyl)glutathione

中文名称
——
中文别名
——
英文名称
S-(3-hydroxypropyl)glutathione
英文别名
N-((R)-1-((carboxymethyl)amino)-3-((3-hydroxypropyl)thio)-1-oxopropan-2-yl)-D-glutamine;hydroxypropyl-S-GSH;S-(3-hydroxypropyl)-glutathione;(2S)-2-amino-5-[[(2R)-1-(carboxymethylamino)-3-(3-hydroxypropylsulfanyl)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid
S-(3-hydroxypropyl)glutathione化学式
CAS
——
化学式
C13H23N3O7S
mdl
——
分子量
365.408
InChiKey
PWWFPJVDCXEMMZ-IUCAKERBSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -4.5
  • 重原子数:
    24
  • 可旋转键数:
    13
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.69
  • 拓扑面积:
    204
  • 氢给体数:
    6
  • 氢受体数:
    9

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    S-(3-oxopropyl)glutathione 在 sodium tetrahydroborate 、 sodium hydroxide 作用下, 反应 0.5h, 生成 S-(3-hydroxypropyl)glutathione
    参考文献:
    名称:
    丙烯醛的维生素 C 缀合物的形成及其对氧磷酶介导的转化为 5,6,7,8-四羟基-4-氧代辛醛
    摘要:
    据报道,维生素 C(抗坏血酸)参与体外迈克尔加成反应,与 α,β-不饱和醛(如丙烯醛)形成维生素 C 缀合物。该研究显示了丙烯醛维生素 C 结合物 (AscACR) 在暴露于丙烯醛二乙酸酯的培养的人类单核细胞 THP-1 细胞中形成和代谢的证据。通过使用18 O 和13C 标记与液相色谱-串联质谱法相结合,显示 AscACR 将抗坏血酸内酯水解转化为中间体羧酸。随后羧酸的脱羧产生 5,6,7,8-四羟基-4-氧代辛醛 (THO)。当 THP-1 细胞用抗坏血酸 (1 mM, 18 h) 预处理,然后暴露于二乙酸丙烯醛时,在细胞裂解物和培养基中检测到 THO 作为其五氟苄基肟衍生物。THO形成需要用抗坏血酸和丙烯醛二乙酸酯处理THP-1细胞。内酯酶、人重组对氧磷酶 1 和 2 促进了 AscACR 形成 THO。THP-1 细胞表现出 PON 活性,这解释了 AscACR 在这些细胞中催化转化为
    DOI:
    10.1021/tx900452j
点击查看最新优质反应信息

文献信息

  • A biohybrid strategy for enabling photoredox catalysis with low-energy light
    作者:Paul T. Cesana、Beryl X. Li、Samuel G. Shepard、Stephen I. Ting、Stephanie M. Hart、Courtney M. Olson、Jesus I. Martinez Alvarado、Minjung Son、Talia J. Steiman、Felix N. Castellano、Abigail G. Doyle、David W.C. MacMillan、Gabriela S. Schlau-Cohen
    DOI:10.1016/j.chempr.2021.10.010
    日期:2022.1
    blue-to-UV excitation. In photosynthesis, both light capture and reactivity have been optimized by separation into distinct sites. Inspired by this modular architecture, we synthesized a biohybrid photocatalyst by covalent attachment of the photosynthetic light-harvesting protein R-phycoerythrin (RPE) to the transition-metal photocatalyst tris(2,2′-bipyridine)ruthenium(II) ([Ru(bpy)3]2+). Spectroscopic
    自然系统通过高效和宽带的能量捕获来驱动光合作用的高能反应。过渡属光催化剂同样将光转化为化学反应性,但操作受限,需要蓝光到紫外光激发。在光合作用中,通过分离到不同的位点,光捕获和反应性都得到了优化。受这种模块化结构的启发,我们通过将光合捕光蛋白 R-藻红蛋白 (RPE) 共价连接到过渡属光催化剂三 (2,2'-联吡啶) (II) ([Ru( bpy) 3 ] 2+ )。光谱研究发现,吸收的光能有效地从 RPE 集中到 [Ru(bpy) 3 ] 2+. 通过增加醇-烯偶联反应和半胱酰-脱反应的产率证明了生物混合光催化剂的实用性,包括在红色波长下恢复的反应性,其中 [Ru(bpy) 3 ] 2+单独不吸收。
  • A thiol–ene mediated approach for peptide bioconjugation using ‘green’ solvents under continuous flow
    作者:Inés Rabadán González、Joshua T. McLean、Nikita Ostrovitsa、Sheila Fitzgerald、Andrea Mezzetta、Lorenzo Guazzelli、Donal F. O'Shea、Eoin M. Scanlan
    DOI:10.1039/d4ob00122b
    日期:——
    Flow chemistry has emerged as an integral process within the chemical sector permitting energy efficient synthetic scale-up while improving safety and minimising solvent usage. Herein, we report the first applications of the photoactivated, radical-mediated thiol–ene reaction for peptide bioconjugation under continuous flow. Bioconjugation reactions employing deep eutectic solvents, bio-based solvents
    流动化学已成为化学领域的一个不可或缺的过程,可以实现节能合成规模扩大,同时提高安全性并最大限度地减少溶剂使用。在此,我们报告了光活化、自由基介导的醇-烯反应在连续流下肽生物共轭中的首次应用。本文报道了使用低共熔溶剂、生物基溶剂和全系统进行的一系列生物相关肽底物的生物共轭反应。使用溶性光引发剂 Irgacure 2959 可以在完全性条件下合成糖基化肽,无需添加有机溶剂,并增强了这些快速光活化生物共轭反应的绿色资质。
  • Metabolism of the Chemoprotective Agent Diallyl Sulfide to Glutathione Conjugates in Rats
    作者:Lixia Jin、Thomas A. Baillie
    DOI:10.1021/tx9601768
    日期:1997.3.1
    The chemoprotective effects of diallyl sulfide (DAS), a flavor component of garlic, have been attributed to its inhibitory effects on CYP2E1-mediated bioactivation of certain carcinogenic chemicals. In addition to being a competitive inhibitor of CYP2E1 in vitro, DAS is known to cause irreversible inhibition of CYP2E1 in rats in vivo. The latter property is believed to be mediated by the DAS metabolite diallyl sulfone (DASO(2)), which is thought to be a mechanism-based inhibitor of CYP2E1, although the underlying mechanism remains unknown. In order to investigate the nature of the reactive intermediate(s) responsible for the inactivation of CY2BE1 by DAS and its immediate metabolites, the present studies were carried out to detect and identify potential glutathione (GSH) conjugates of DAS and its metabolites diallyl sulfoxide (DASO) and DASO(2). By means of ionspray LC-MS/MS, ten GSH conjugates were identified in bile collected from rats dosed with DAS, namely: S-[3-(S'-allyl-S'-oxomercapto)-2-hydroxypropyl]glutathione (M1, M2; diastereomers), S-[3-(S'-allyl-S'-dioxomercapto)-2-hydroxypropyl]-glutathione (M5), S-[2-(S'-allyl-S'-dioxomercapto)-1-(hydroxymethyl)ethyl]glutathione (M3, M4; diastereomers), S-[3-(S'-allylmercapto)-2-hydroxypropyl]glutathione(M6), S-(3-hydroxypropyl)-glutathione (M7), S-(2-carboxyethyl)glutathione (M8), allyl glutathionyl disulfide (M9), and S-allylglutathione (M10). With the exception of M6, all of the above GSH conjugates were detected in the bile of rats treated with DASO, while only M3, M4, M5, M8, and M10 were found in the bile of rats treated with DASO(2). Experiments conducted in vitro showed that GSH reacted spontaneously with DASO to form conjugates M9 and M10, and with DASO(2) to form M10. In the presence of NADPH and GSH, incubation of DAS with cDNA-expressed rat CYP2E1 resulted in the formation of metabolites M6, M9, and M10, while incubation with DASO led to the formation of M3, M4, M5, M9, and M10. When DASO(2) acted as substrate, CY2BE1 generated only conjugates M3, M4, M5, and M10. These results indicate that while DAS and DASO undergo extensive oxidation in vice at the sulfur atom, the allylic carbon, and the terminal double bonds, CY2BE1 preferentially catalyzes oxidation of the sulfur atom to form the sulfoxide and the sulfone (DASO and DASO(2)). However, it appears that the end product of this sequence, namely, DASO(2), undergoes further CYP2E1-mediated activation of the olefinic pi-bond, a reaction which transforms many terminal olefins to potent mechanism-based P450 inhibitors. We hypothesize, therefore, that it is this final metabolic event with DASO(2) which leads to autocatalytic destruction of CYP2E1 and which is mainly responsible for the chemoprotective effects of DAS in vivo.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,4R)-Boc-4-环己基-吡咯烷-2-羧酸 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-N,3,3-三甲基-N-(苯甲基)丁酰胺 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S)-2-氨基-3,3-二甲基-N-2-吡啶基丁酰胺 (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,5R,6R)-5-(1-乙基丙氧基)-7-氧杂双环[4.1.0]庚-3-烯-3-羧酸乙基酯 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素(1-6) 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸