摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

dysprosium trifluoromethanesulfonate

中文名称
——
中文别名
——
英文名称
dysprosium trifluoromethanesulfonate
英文别名
dysprosium(III) trifluoroacetate;Dy trifluoroacetate;Dy(TFA)3
dysprosium trifluoromethanesulfonate化学式
CAS
——
化学式
3C2F3O2*Dy
mdl
——
分子量
501.548
InChiKey
MHLIULNJPVXPDE-UHFFFAOYSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.7
  • 重原子数:
    8.0
  • 可旋转键数:
    0.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    40.13
  • 氢给体数:
    0.0
  • 氢受体数:
    2.0

反应信息

  • 作为反应物:
    描述:
    dysprosium trifluoromethanesulfonatelithium trifluoroacetate 在 oleic acid 、 1-octadecene 作用下, 以 neat (no solvent) 为溶剂, 生成
    参考文献:
    名称:
    衍生自三氟乙酸金属盐前体的旋光性均匀的钾和锂稀土氟化物纳米晶体。
    摘要:
    本文报道了具有不同形状(立方KLaF4和KCeF4蠕虫状纳米线,纳米立方体和纳米多面体;立方LiREF4(RE = Pr to Gd,Y)纳米多面体;通过在热油酸/油胺/ 1-中共同加热Li(CF3COO)或K(CF3COO)和RE(CF3COO)3共同热解四方LiREF4(RE = Tb对应Lu,Y)菱形纳米板)十八碳烯溶液。已经详细研究了溶剂组成,反应温度和时间对制备的纳米晶体的晶相纯度,形状和尺寸的影响。发现单分散纳米晶体的形成在很大程度上取决于从Li到K的碱金属以及从La到Lu和Y的稀土系列的性质。基于一系列的实验结果,还提出了一种受控增长机制。另外,评估了为设计的发光特性掺杂这些刚合成的主体纳米晶体的难易程度。例如,单分散和单晶掺杂Eu3 +的KGdF4,Yb3 +和Er3 +共掺杂的LiYF4纳米晶体重新分散在环己烷中,在紫外(UV)激发和近红外(NIR)980 nm激光激发下分别显示可见的室温红色和绿色发射。
    DOI:
    10.1039/b909145a
  • 作为产物:
    描述:
    dysprosium((III) oxide 、 三氟乙酸 为溶剂, 生成 dysprosium trifluoromethanesulfonate
    参考文献:
    名称:
    水分散性无配体的稀土氟化物纳米粒子:水转移与NaREF4-to-REF3相变。
    摘要:
    含油酸酯封端的10 nm以下α-和β-NaREF4NPs的化学稳定性(RE = Y,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb,Lu对于α-和RE = β-相NPs的Pr,Nd,Sm,Eu,Gd,Tb,Dy在酸性条件下进行评估,该酸性条件用于去除配体以实现水分散性。已经发现,对于如此小的NP,为了使水转移有效并且产生良好分散的无配体的NP,pH必须低于3。与通常认为的NaREF4的良好化学稳定性形成鲜明对比的是,观察到这些条件可能会导致NaREF4 NP相转变为更大的六方或正交相REF3的风险,具体取决于NP的组成。发现α/β-NaREF4和六方/斜方REF3相的热力学稳定性(由RE离子选择决定)与NPs的化学稳定性之间存在相关性。例如,β-NaGdF4NPs保持稳定,而α-NaGdF4NPs相转变成六方GdF3。更一般而言,基于较轻RE离子的NaREF4 NP更倾向于相变,而基于较重RE离子的NaREF4
    DOI:
    10.1039/d0dt01080d
点击查看最新优质反应信息

文献信息

  • High-Quality Sodium Rare-Earth Fluoride Nanocrystals:  Controlled Synthesis and Optical Properties
    作者:Hao-Xin Mai、Ya-Wen Zhang、Rui Si、Zheng-Guang Yan、Ling-dong Sun、Li-Ping You、Chun-Hua Yan
    DOI:10.1021/ja060212h
    日期:2006.5.1
    We report a general synthesis of high-quality cubic (alpha-phase) and hexagonal (beta-phase) NaREF4 (RE: Pr to Lu, Y) nanocrystals (nanopolyhedra, nanorods, nanoplates, and nanospheres) and NaYF(4):Yb,Er/Tm nanocrystals (nanopolyhedra and nanoplates) via the co-thermolysis of Na(CF3COO) and RE(CF3COO)3 in oleic acid/oleylamine/1-octadecene. By tuning the ratio of Na/RE, solvent composition, reaction
    我们报告了高质量立方(α 相)和六方(β 相)NaREF4(RE:Pr 到 Lu,Y)纳米晶体(纳米多面体、纳米棒、纳米板和纳米球)和 NaYF(4):Yb 的一般合成, Er/Tm 纳米晶体(纳米多面体和纳米片)通过 Na(CF3COO) 和 RE(CF3COO)3 在油酸/油胺/1-十八碳烯中的共热分解。通过调整 Na/RE 的比例、溶剂组成、反应温度和时间,我们可以控制纳米晶体的相、形状和尺寸。根据其α->β相变行为,沿稀土系列,NaREF4可分为三组(I:Pr和Nd;II:Sm到Tb;III:Dy到Lu,Y)。整个可控合成机制可以从自由能的角度来解释。
  • Gmelin Handbuch der Anorganischen Chemie, Gmelin Handbook: Sc: MVol.D5, 1.3.2.1, page 56 - 61
    作者:
    DOI:——
    日期:——
  • Highly Luminescent, Visible-Emitting Lanthanide Macrocyclic Chelates Stable in Water and Derived from the Cyclen Framework
    作者:Gaël Zucchi、Anne-Claire Ferrand、Rosario Scopelliti、Jean-Claude G. Bünzli
    DOI:10.1021/ic011121i
    日期:2002.5.1
    Two new tetraazamacrocyclic ligands are designed with the aim of sensitizing the luminescence of Tb(Ill) and Eu(Ill) ions in water: L51,4,7,10-tetrakis[N-(phenacyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane} and L6 1,4,7,10-tetrakis[N-(4-phenylphenacyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane}. These ligands react with lanthanide trifluoromethanesulfonates to yield stable 1:1 complexes in water (log K = 12.89 +/- 0.15 for EuL5). X-ray diffraction on [Tb(L5)(H2O)](CF3SO3)(3) (P (1) over bar, a = 13,308(3) Angstrom, b = 14.338(3) Angstrom, c = 16.130(3) Angstrom, alpha = 101.37(3)degrees, beta = 96.16(3)degrees, gamma = 98.60(3)degrees) shows the Tb(III) ion lying on a C-4 axis and being 9-coordinate, with one water molecule bound in its inner coordination sphere. The absolute quantum yields are determined in aerated water for the complexes formed with ions used in fluoroimmunoassays (Ln = Sm, Eu, To, and Dy). Large values are found for [Tb(H2O)(L5)](3+) and [Eu(H2O)(L6)](3+), in line with the molecular design of the receptors: 23.1% and 24.7%, respectively. The intense luminescence of these ions results from efficient intersystem crossing and L Ln energy transfer processes, as well as from a suitable shielding of the emitting ions from radiationless deactivation.
  • Misra, S. N.; Singh, M., Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 1981, vol. 11, p. 157 - 165
    作者:Misra, S. N.、Singh, M.
    DOI:——
    日期:——
  • Ytterbium – Doped Prussian blue: Fabrication, photothermal performance and antibacterial activity
    作者:Xin Chen、Gang Wu、Jingyan Tang、Lin Zhou、Shaohua Wei
    DOI:10.1016/j.inoche.2020.107821
    日期:2020.4
    The application of photothermal therapy (PTT) to defeat bacterial infections has attracted great attention in the past years. Prussian blue (PB) is a potential photothermal agent in bacteria obliteration. The electron density of cyanide bonds (-C N-) in PB plays a decisive role on its PTT performance. Meanwhile, recent reports indicated that encapsulating PB shell on lanthanide nanomaterials core could effectively enhance its photothermal efficiency. Hence, a series of lanthanide ions, including erbium (Er3+), dysprosium (Dy3+), thulium (Tm3+), ytterbium (Yb3+), doped PB nanocubes were fabricated by a simple doping method due to the differences between lanthanide and iron on changing electron density of cyanide bond. And the Yb3+ doped PB (PB-Yb) has the best PTT performance of all nanocubes. Structure analyzing results indicate that 9% Fe (Fe2+ or Fe3+) were replaced by Yb3+ in PB-Yb, which could raise its electron density to improve its PTT performance. And the antibacterial test also verified the conclusion. All above results proved that doping proper lanthanide ions into PB is a simple and effective way to improve its photothermal performance.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,4R)-Boc-4-环己基-吡咯烷-2-羧酸 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-N,3,3-三甲基-N-(苯甲基)丁酰胺 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S)-2-氨基-3,3-二甲基-N-2-吡啶基丁酰胺 (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,5R,6R)-5-(1-乙基丙氧基)-7-氧杂双环[4.1.0]庚-3-烯-3-羧酸乙基酯 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素(1-6) 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸