摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(S)-N-(1-cyano-2-methylpropyl)acetamide

中文名称
——
中文别名
——
英文名称
(S)-N-(1-cyano-2-methylpropyl)acetamide
英文别名
N-[(1S)-1-cyano-2-methylpropyl]acetamide
(S)-N-(1-cyano-2-methylpropyl)acetamide化学式
CAS
——
化学式
C7H12N2O
mdl
——
分子量
140.185
InChiKey
UWZRHVFDQICYQA-SSDOTTSWSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.7
  • 重原子数:
    10
  • 可旋转键数:
    2
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.71
  • 拓扑面积:
    52.9
  • 氢给体数:
    1
  • 氢受体数:
    2

反应信息

  • 作为反应物:
    描述:
    (S)-N-(1-cyano-2-methylpropyl)acetamide 在 sodium hydrosulfide hydrate 作用下, 以 重水 为溶剂, 反应 24.0h, 以99%的产率得到N-[(2S)-1-amino-3-methyl-1-sulfanylidenebutan-2-yl]acetamide
    参考文献:
    名称:
    水中化学选择性氨基腈偶联的肽连接
    摘要:
    酰胺键的形成是化学和生物学中最重要的反应之一 1-4,但目前还没有化学方法可以在水中实现 α-肽连接,从而耐受肽连接位点的所有 20 种蛋白质氨基酸。通用遗传密码确立了肽的生物学作用早于生命最后一个普遍的共同祖先,并且肽在生命起源中发挥了重要作用5-9。硫在柠檬酸循环、非核糖体肽合成和聚酮化合物生物合成中的重要作用指向在生命进化过程中,硫酯依赖性肽连接先于 RNA 依赖性蛋白质合成 5,9-13。然而,尚未证明氨酰基硫酯形成的稳健机制。在这里,我们报告了一种化学选择性,高产 α-氨基腈连接,仅利用益生元合理的分子——硫化氢、硫代乙酸盐 12,14 和铁氰化物 12,14-17 或氰基乙炔 8,14——在水中产生 α-肽。这种连接对 α-氨基腈偶联具有极高的选择性,并能耐受所有 20 个蛋白质氨基酸残基。两个基本特征使肽能够在水中连接:α-氨基腈的反应性和 pKaH 使它们与中性 pH 值的
    DOI:
    10.1038/s41586-019-1371-4
  • 作为产物:
    描述:
    N-acetyl-L-valine amide 在 palladium(II) trifluoroacetate 、 二氯乙腈 作用下, 以 乙腈 为溶剂, 反应 4.0h, 以91%的产率得到(S)-N-(1-cyano-2-methylpropyl)acetamide
    参考文献:
    名称:
    酰胺控制的酰胺转移至腈的转移脱水
    摘要:
    通过使用二氯乙腈作为水受体,在温和的水性条件下钯催化的伯酰胺脱水有效地进行为腈。设计该转移脱水催化的关键是确定一种有效的水受体二氯乙腈,该水受体在Pd催化剂的帮助下优先于酰胺而不是其他极性官能团反应,并使所需的反应体系趋于能动,从而驱动脱水。
    DOI:
    10.1021/acs.orglett.9b01657
点击查看最新优质反应信息

文献信息

  • [EN] NITRILE HYDRATASES FROM RHODOCOCCUS ERYTHROPOLIS AND THEIR APPLICATION<br/>[FR] NITRILE HYDRATASES PROVENANT DE RHODOCOCCUS ERYTHROPOLIS ET LEUR APPLICATION
    申请人:DEGUSSA
    公开号:WO2004067738A2
    公开(公告)日:2004-08-12
    The present invention is directed to polypeptides exhibiting nitrile hydratase activity and the respective encoding nucleic acids from Rhodococcus erythropolis. Furthermore, micoorganisms, plasmids and vectors comprising the polypetides are also embraced by this invention.
  • Peptide ligation by chemoselective aminonitrile coupling in water
    作者:Pierre Canavelli、Saidul Islam、Matthew W. Powner
    DOI:10.1038/s41586-019-1371-4
    日期:2019.7
    N-to-C peptide ligation. Our model unites prebiotic aminonitrile synthesis and biological α-peptides, suggesting that short N-acyl peptide nitriles were plausible substrates during early evolution.Prebiotic peptide formation is achieved through chemoselective, high-yielding ligation of α-aminonitriles in water, showing selectivity for α-peptide coupling and tolerance of all proteinogenic amino acid residues
    酰胺键的形成是化学和生物学中最重要的反应之一 1-4,但目前还没有化学方法可以在水中实现 α-肽连接,从而耐受肽连接位点的所有 20 种蛋白质氨基酸。通用遗传密码确立了肽的生物学作用早于生命最后一个普遍的共同祖先,并且肽在生命起源中发挥了重要作用5-9。硫在柠檬酸循环、非核糖体肽合成和聚酮化合物生物合成中的重要作用指向在生命进化过程中,硫酯依赖性肽连接先于 RNA 依赖性蛋白质合成 5,9-13。然而,尚未证明氨酰基硫酯形成的稳健机制。在这里,我们报告了一种化学选择性,高产 α-氨基腈连接,仅利用益生元合理的分子——硫化氢、硫代乙酸盐 12,14 和铁氰化物 12,14-17 或氰基乙炔 8,14——在水中产生 α-肽。这种连接对 α-氨基腈偶联具有极高的选择性,并能耐受所有 20 个蛋白质氨基酸残基。两个基本特征使肽能够在水中连接:α-氨基腈的反应性和 pKaH 使它们与中性 pH 值的
  • Acceptor-Controlled Transfer Dehydration of Amides to Nitriles
    作者:Hiroyuki Okabe、Asuka Naraoka、Takahiro Isogawa、Shunsuke Oishi、Hiroshi Naka
    DOI:10.1021/acs.orglett.9b01657
    日期:2019.6.21
    dehydration of primary amides to nitriles efficiently proceeds under mild, aqueous conditions via the use of dichloroacetonitrile as a water acceptor. A key to the design of this transfer dehydration catalysis is the identification of an efficient water acceptor, dichloroacetonitrile, that preferentially reacts with amides over other polar functional groups with the aid of the Pd catalyst and makes the desired
    通过使用二氯乙腈作为水受体,在温和的水性条件下钯催化的伯酰胺脱水有效地进行为腈。设计该转移脱水催化的关键是确定一种有效的水受体二氯乙腈,该水受体在Pd催化剂的帮助下优先于酰胺而不是其他极性官能团反应,并使所需的反应体系趋于能动,从而驱动脱水。
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物