Synthesis and evaluation of 2,5-furan, 2,5-thiophene and 3,4-thiophene-based derivatives as CXCR4 inhibitors
摘要:
The interaction between G-Protein coupled receptor CXCR4 and its natural ligand CXCL12 has been linked to inflammation experienced by patients with Irritable Bowel Disease (IBD). Blocking this interaction could potentially reduce inflammatory symptoms in IBD patients. In this work, several thiophene-based and furan-based compounds modeled after AMD3100 and WZ811-two known antagonists that interrupt the CXCR4-CXCL12 interaction-were synthesized and analyzed. Fifteen hit compounds were identified; these compounds exhibited effective concentrations (EC) lower than 1000 nM (AMD3100) and inhibited invasion of metastatic cells by at least 45%. Selected compounds (2d, 2j, 8a) that inhibited metastatic invasion at a higher rate than WZ811 (62%) were submitted for a carrageenan inflammation test, where both 8a and 2j reduced inflammation in the same range as WZ811 (40%) but did not reduce inflammation more than 40%. Select compounds were also modeled in silico to show key residue interactions. These preliminary results with furan-based and thiophene-based analogues contribute to the new class on heterocyclic aromatic-based CXCR4 antagonists. (C) 2019 Elsevier Masson SAS. All rights reserved.
The interaction between G-Protein coupled receptor CXCR4 and its natural ligand CXCL12 has been linked to inflammation experienced by patients with Irritable Bowel Disease (IBD). Blocking this interaction could potentially reduce inflammatory symptoms in IBD patients. In this work, several thiophene-based and furan-based compounds modeled after AMD3100 and WZ811-two known antagonists that interrupt the CXCR4-CXCL12 interaction-were synthesized and analyzed. Fifteen hit compounds were identified; these compounds exhibited effective concentrations (EC) lower than 1000 nM (AMD3100) and inhibited invasion of metastatic cells by at least 45%. Selected compounds (2d, 2j, 8a) that inhibited metastatic invasion at a higher rate than WZ811 (62%) were submitted for a carrageenan inflammation test, where both 8a and 2j reduced inflammation in the same range as WZ811 (40%) but did not reduce inflammation more than 40%. Select compounds were also modeled in silico to show key residue interactions. These preliminary results with furan-based and thiophene-based analogues contribute to the new class on heterocyclic aromatic-based CXCR4 antagonists. (C) 2019 Elsevier Masson SAS. All rights reserved.