Influence of solvents and assembly methods on the supramolecular patterns and luminescent properties of organic salts comprising 4,4′-dihydroxybiphenyl-3,3′-disulfonate and triphenylmethanaminium
作者:Ya-Nan Li、Li-Hua Huo、Yi-Zhe Yu、Fa-Yuan Ge、Zhao-Peng Deng、Zhi-Biao Zhu、Shan Gao
DOI:10.1039/c4ra12338g
日期:——
Twelve organic salts, namely 2(HTPMA)+·(H2M)2â·4(H2O) (1), 2(HTPMA)+·(H2M)2â·2(H2O) (2), 2(HTPMA)+·(H2M)2â·2(MeOH)·(H2O) (3), 2(HTPMA)+·(H2M)2â·4(MeOH) (4), 2(HTPMA)+·(H2M)2â·(MeOH) (5), 2(HTPMA)+·(H2M)2â·2(EtOH)·2(H2O) (6), 2(HTPMA)+·(H2M)2â·2(n-PrOH) (7), 2(HTPMA)+·(H2M)2â·2(n-BuOH) (8), 2(HTPMA)+·(H2M)2â·2(n-PeOH) (9), 2(HTPMA)+·(H2M)2â·2(DO) (10), 2(HTPMA)+·(H2M)2â·2(DMF) (11), and 2(HTPMA)+·(H2M)2â·2(DMSO) (12) (H4M = 4,4â²-dihydroxybiphenyl-3,3â²-disulfonic acid, TPMA = triphenylmethylamine, DO = 1,4-dioxane) have been obtained from the reaction of H4M and TPMA in different solvents by two assembly methods and characterized by elemental analysis, IR, TG, PL, powder and single-crystal X-ray diffraction. Structural analyses indicate that the nature of the solvent molecules can effectively influence the â¯(âSO3)â¯(âNH3)â¯(solvent)⯠patterns, which then result in diverse packing diagrams. In salts 1 and 3, pairs of HTPMA+ cations arrange in a tail-to-tail mode to form column motifs which extend the layers of H2M2â dianions into a pillared layered network. On the contrary, pairs of HTPMA+ cations in salt 2 arrange in head-to-head mode and form layer structures together with pairs of H2M2â dianions. The HTPMA+ cations and H2M2â dianions in salts 4 and 6 are alternately arranged to form a column motif, which then pack with each other to form a supramolecular network. Pairs of head-to-head HTPMA+ cations in salts 7â9 are sandwiched between the âSO3 groups through hydrogen bonding interactions, generating a graphite-like structure. The HTPMA+ cations in salts 5 and 10â12 arrange in tail-to-tail mode to form column motifs which are then sandwiched between biphenyl rings instead of the âSO3 groups. Moreover, different assembly processes are also responsible for the diverse structures. Small solvent molecules, such as H2O and MeOH, tend to form different structures (1 and 2, 3 and 4), while large molecules usually present the same structures (6â12). It is interesting to note that salt 4 can transform into salt 5 after being exposed to the air for several hours. Luminescence investigation reveals that the emission maximum of salts 1â12 varies from 365 to 371 nm.
十二种有机盐,即 2(HTPMA)+Â-(H2M)2Â-4(H2O) (1)、2(HTPMA)+Â-(H2M)2Â-2(H2O) (2)、2(HTPMA)+Â-(H2M)2Â-2(MeOH)Â-(H2O) (3)、2(HTPMA)+Â-(H2M)2Â-4(MeOH) (4)、2(HTPMA)+Â-(H2M)2Â-(MeOH) (5),2(HTPMA)+Â-(H2M)2Â-2(EtOH)Â-2(H2O) (6),2(HTPMA)+Â-(H2M)2Â-2(n-PrOH) (7),2(HTPMA)+Â-(H2M)2Â-2(n-BuOH) (8),2(HTPMA)+Â-(H2M)2Â-2(n-PeOH) (9)、2(HTPMA)+Â-(H2M)2âÂ-2(DO) (10)、2(HTPMA)+Â-(H2M)2âÂ-2(DMF) (11)和 2(HTPMA)+Â-(H2M)2âÂ-2(DMSO) (12) (H4M = 4,4â²-二羟基联苯-3,3â²-二磺酸,TPMA = 三苯甲基胺、DO = 1,4-二氧六环)通过两种组装方法从 H4M 和 TPMA 在不同溶剂中的反应中获得,并通过元素分析、红外光谱、热导管光谱、聚光光谱、粉末和单晶 X 射线衍射进行了表征。结构分析表明,溶剂分子的性质会有效地影响â¯(âSO3)â¯(âNH3)â¯(溶剂)â¯模式,进而导致不同的堆积图。在盐 1 和盐 3 中,成对的 HTPMA+ 阳离子以尾对尾的方式排列,形成柱状图案,将 H2M2â 二元离子层扩展成柱状分层网络。相反,盐 2 中的成对 HTPMA+ 阳离子以头对头模式排列,与成对的 H2M2â二元离子一起形成层状结构。盐 4 和盐 6 中的 HTPMA+阳离子和 H2M2â二元离子交替排列形成柱状图案,然后相互包裹形成超分子网络。盐 7â9 中成对的头对头 HTPMA+ 阳离子通过氢键相互作用夹在âSO3 基团之间,形成类似石墨的结构。盐 5 和盐 10â12 中的 HTPMA+ 阳离子以尾对尾模式排列,形成柱状图案,然后夹在联苯环而不是âSO3 基团之间。此外,不同的组装过程也是造成结构多样化的原因。小溶剂分子,如 H2O 和 MeOH,往往会形成不同的结构(1 和 2、3 和 4),而大分子则通常呈现相同的结构(6â12)。值得注意的是,盐 4 在空气中暴露数小时后可转化为盐 5。发光研究表明,盐 1â12 的最大发射波长在 365 纳米到 371 纳米之间。