所有植物都会产生亚油酸,这是细胞壁的亲脂性屏障,可以控制水和溶质通量,限制病原体感染。通常将其描述为由多聚脂肪族和多聚芳香族结构域组成的异聚物。主要单体包括ω-羟基和α,ω-二羧酸脂肪酸,甘油和ferulate。尚未确定芳香族亚油酸途径的基因。在这里,我们证明拟南芥(Arabidopsis thaliana)基因AT5G41040,是酰基转移酶BAHD家族的成员,对于将ferulate合并到亚油酸中至关重要。在转化了AT5G41040启动子:YFP融合的拟南芥植株中,报告基因表达定位于正在经历亚油酸化的细胞层。AT5G41040敲除突变体几乎完全消除了与亚油酸相关的酯键ferulate。然而,at5g41040根表皮中亚油酸的经典层状结构未被破坏。at5g41040敲除突变体种子中ferulate的减少与含有ω-羟基基团的脂肪族单体的近似化学计量减少相关。重组AT5G41040p催化从feruloyl-辅酶A到ω-羟基脂肪酸和脂肪醇的酰基转移,证明该基因编码feruloyl转移酶。还研究了CYP86B1,一种细胞色素P450单加氧酶基因,其转录水平与AT5G41040表达相关。敲除和过表达证实CYP86B1是亚油酸中非常长链饱和α,ω-双功能脂肪族单体生物合成所需的氧化酶。cyp86b1敲除突变体的种子亚油酸组成令人惊讶地被未被取代的脂肪酸所主导,这些酸无法形成聚合键。综上所述,这些结果挑战了我们对亚油酸结构的当前看法,质疑了酯键ferulate作为必要组分的功能以及扩展的脂肪族聚酯的存在。
Suberin, a polyester polymer in the cell wall of terrestrial plants, controls the transport of water and nutrients and protects plant from pathogenic infections and environmental stresses. Structurally, suberin consists of aliphatic and aromatic domains;
-羟基肉桂酸是后者的主要酚类成分。通过分析缺乏一类酰辅酶A依赖性酰转移酶(BAHD)基因的突变株的“壁结合”酚类物质,我们发现芥菜中芳香族亚脂素的形成,主要在种子和根组织中,取决于由At5g41040编码的BAHD超家族酶的成员。该酶表现出ω-羟基酸羟基肉桂酰转移酶活性,对于香草酰辅酶A和16-羟基棕榈酸具有体外动力学偏好。在芥菜中敲除或沉默At5g41040基因,会特异性减少亚脂素中香豆酸的含量,但不会影响香豆素或芥子酸的积累。亚脂素酚类的丧失不同程度地影响脂肪族单体的负载,并改变种子和根对盐胁迫的渗透性和敏感性。这突显了亚脂素芳香族在聚合物功能中的重要性。
Sporopollenin is the major component of the outer pollen wall (exine). Fatty acid derivatives and phenolics are thought to be its monomeric building blocks, but the precise structure, biosynthetic route, and genetics of sporopollenin are poorly understood. Based on a phenotypic mutant screen in Arabidopsis (Arabidopsis thaliana), we identified a cytochrome P450, designated CYP704B1, as being essential for exine development. CYP704B1 is expressed in the developing anthers. Mutations in CYP704B1 result in impaired pollen walls that lack a normal exine layer and exhibit a characteristic striped surface, termed zebra phenotype. Heterologous expression of CYP704B1 in yeast cells demonstrated that it catalyzes ω-hydroxylation of long-chain fatty acids, implicating these molecules in sporopollenin synthesis. Recently, an anther-specific cytochrome P450, denoted CYP703A2, that catalyzes in-chain hydroxylation of lauric acid was also shown to be involved in sporopollenin synthesis. This shows that different classes of hydroxylated fatty acids serve as essential compounds for sporopollenin formation. The genetic relationships between CYP704B1, CYP703A2, and another exine gene, MALE STERILITY2, which encodes a fatty acyl reductase, were explored. Mutations in all three genes resulted in pollen with remarkably similar zebra phenotypes, distinct from those of other known exine mutants. The double and triple mutant combinations did not result in the appearance of novel phenotypes or enhancement of single mutant phenotypes. This implies that each of the three genes is required to provide an indispensable subset of fatty acid-derived components within the sporopollenin biosynthesis framework.
孢粉素是花粉外壁(外壳)的主要成分。脂肪酸衍生物和酚类被认为是其单体组成部分,但孢粉素的精确结构、生物合成途径和遗传学仍不清楚。通过在拟南芥(拟南芥)中进行表型突变筛选,我们确定了一种细胞色素P450,称为CYP704B1,作为外壳发育的关键因素。CYP704B1在发育的花药中表达。CYP704B1的突变导致花粉壁受损,缺乏正常的外壳层,并表现出特征性的条纹表面,称为斑马表型。在酵母细胞中异源表达CYP704B1表明,它催化长链脂肪酸的ω-羟化,暗示这些分子参与了孢粉素的合成。最近,一种花药特异性的细胞色素P450,称为CYP703A2,被证明参与孢粉素的合成,它催化月桂酸的链内羟化。这表明,不同类别的羟化脂肪酸作为孢粉素形成的必需化合物。探讨了CYP704B1、CYP703A2和另一种外壳基因MALE STERILITY2之间的遗传关系,后者编码脂肪酰还原酶。所有三种基因的突变导致花粉呈现出非常相似的斑马表型,与其他已知的外壳突变体不同。双重和三重突变组合并没有出现新的表型或增强单一突变体表型。这意味着每个基因都需要在孢粉素生物合成框架中提供必不可少的脂肪酸衍生组分。
Three cytochrome P450 monooxygenase