Transfer of Chirality in the Rhodium-Catalyzed Intramolecular Formal Hetero-[5 + 2] Cycloaddition of Vinyl Aziridines and Alkynes: Stereoselective Synthesis of Fused Azepine Derivatives
five-atom component in rhodium-catalyzedintramolecular formal hetero-[5 + 2] cycloaddition reactions with alkynes, a highly efficient method for the synthesis of fused azepine derivatives at 30 °C was developed. The reaction has broad substrate scope and tolerates a wide range of functional groups. The chirality of vinyl aziridine-alkyne substrates can be completely transferred to the cycloadducts,
Modular Access to the Stereoisomers of Fused Bicyclic Azepines: Rhodium‐Catalyzed Intramolecular Stereospecific Hetero‐[5+2] Cycloaddition of Vinyl Aziridines and Alkenes
first rhodium‐catalyzed intramolecular hetero‐[5+2] cycloaddition reaction of vinyl aziridines and alkenes was realized, wherein both internal and terminal alkenes were applicable. With this method, a variety of unique substituted chiral fused bicyclic azepines, bearing multiple contiguous stereogenic centers, were facilely accessed in a straightforward, high‐yielding, and highlystereoselective manner