This work demonstrates the use of hydroxyl amine-based amination reagents RSO2NH-OAc for the nondirected, Cu-catalyzed amination of benzylic C-H bonds. The amination reagents can be prepared on a gram scale, are benchtop stable, and provide benzylic C-H amination products with up to 86% yield. Mechanistic studies of the established reactivity with toluene as substrate reveal a ligand-promoted, Cu-catalyzed mechanism proceeding through Ph-CH2(NTsOAc) as a major intermediate. Stoichiometric reactivity of Ph-CH2(NTsOAc) to produce Ph-CH2-NHTs suggests a two-cycle, radical pathway for C-H amination, in which the decomposition of the employed diimine ligands plays an important role.
This work demonstrates the use of hydroxyl amine-based amination reagents RSO2NH-OAc for the nondirected, Cu-catalyzed amination of benzylic C-H bonds. The amination reagents can be prepared on a gram scale, are benchtop stable, and provide benzylic C-H amination products with up to 86% yield. Mechanistic studies of the established reactivity with toluene as substrate reveal a ligand-promoted, Cu-catalyzed mechanism proceeding through Ph-CH2(NTsOAc) as a major intermediate. Stoichiometric reactivity of Ph-CH2(NTsOAc) to produce Ph-CH2-NHTs suggests a two-cycle, radical pathway for C-H amination, in which the decomposition of the employed diimine ligands plays an important role.
An efficient methodology for the stereoselectivesynthesis of cis‐2,5‐disubstituted pyrrolidines using copper catalyst was developed. The corresponding cis‐2,5‐disubstituted pyrrolidines could be obtained in reasonable yields and with good stereoselectivities in the presence of 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine as ligand and 1‐methyl‐2‐pyrrolidinone as solvent.
Nondirected, Cu-Catalyzed sp<sup>3</sup> C–H Aminations with Hydroxylamine-Based Amination Reagents: Catalytic and Mechanistic Studies
作者:Anqi Wang、Nicholas J. Venditto、Julia W. Darcy、Marion H. Emmert
DOI:10.1021/acs.organomet.7b00003
日期:2017.4.10
This work demonstrates the use of hydroxyl amine-based amination reagents RSO2NH-OAc for the nondirected, Cu-catalyzed amination of benzylic C-H bonds. The amination reagents can be prepared on a gram scale, are benchtop stable, and provide benzylic C-H amination products with up to 86% yield. Mechanistic studies of the established reactivity with toluene as substrate reveal a ligand-promoted, Cu-catalyzed mechanism proceeding through Ph-CH2(NTsOAc) as a major intermediate. Stoichiometric reactivity of Ph-CH2(NTsOAc) to produce Ph-CH2-NHTs suggests a two-cycle, radical pathway for C-H amination, in which the decomposition of the employed diimine ligands plays an important role.