Herein, a rhodium(III)-catalyzedoxidative C–H activation of simple arylphosphonates and phosphonamides with subsequent coupling with alkenes (olefination), internal alkynes (hydroarylation and oxidative cyclization), or simple arenes to give access to diverse P-containing functional frameworks is reported.
palladium-catalyzed synthesis of arylphosphonates from arenediazonium tetrafluoroborates and triethylphosphite or diethylphosphite is presented. The reaction tolerates useful substituents including bromo, chloro, nitro, ether, cyano, keto, and ester groups, can be performed as a one-pot process from anilines omitting the isolation of arenediazonium salts, and can be extended to the preparation of arylphosphine
Oxidative Phosphonylation of Aromatics with Ammonium Cerium(IV) Nitrate Arylphosphonates 5 and 6 can be prepared in good yields in a one-step synthesis starting from arenes with tri- or diethylphosphites and cerium ammonium nitrate (CAN) as oxidant. The selectivity of the oxidative phosphonylation is relatively low; the reactive species is a phosphite radical cation.
Palladium-Catalyzed Desulfitative Cross-Coupling Reaction of Sodium Arylsulfinates with H-Phosphonate Diesters
作者:Tao Miao、Lei Wang
DOI:10.1002/adsc.201300983
日期:2014.3.24
A novel and convenient palladium‐catalyzed cross‐coupling reaction of H‐phosphonate diesters with sodiumarylsulfinates was developed via desulfitation in the presence of silver carbonate and tetra‐butylammonium chloride. This method is highly efficient and provides a rapid access to a broad spectrum of arylphosphonate diesters in good to excellent yields.