Mononuclear ruthenium complex and organic synthesis reaction using same
申请人:KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION
公开号:US09884316B2
公开(公告)日:2018-02-06
A neutral or cationic mononuclear ruthenium divalent complex represented by formula (1) can actualize exceptional catalytic activity in at least one reaction among a hydrosilylation reaction, hydrogenation reaction, and carbonyl compound reduction reaction.
(In the formula, R1-R6 each independently represent a hydrogen atom or an alkyl group, aryl group, aralkyl group, organooxy group, monoorganoamino group, diorganoamino group, monoorganophosphino group, diorganophosphino group, monoorganosilyl group, diorganosilyl group, triorganosilyl group, or organothio group optionally substituted by X; at least one pair comprising any of R1-R3 and any of R4-R6 together represents a crosslinkable substituent; X represents a halogen atom, organooxy group, monoorganoamino group, diorganoamino group, or organothio group; L each independently represent a two-electron ligand other than CO and thiourea ligands; two L may bond to each other; and m represents an integer of 3 or 4.)
Mononuclear iron complex and organic synthesis reaction using same
申请人:KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION
公开号:US10363551B2
公开(公告)日:2019-07-30
A mononuclear iron bivalent complex having iron-silicon bonds, which is represented by formula (1), can exhibit an excellent catalytic activity in at least one reaction selected from three reactions, i.e., a hydrosilylation reaction, a hydrogenation reaction and a reaction for reducing a carbonyl compound.
(In the formula, R1 to R6 independently represent a hydrogen atom, an alkyl group which may be substituted by X, or the like; X represents a halogen atom, or the like; L1 represents at least one two-electron ligand selected from an isonitrile ligand, an amine ligand, an imine ligand, a nitrogenated heterocyclic ring, a phosphine ligand, a phosphite ligand and a sulfide ligand, wherein, when multiple L1's are present, two L1's may be bonded to each other; L2 represents a two-electron ligand that is different from a CO ligand or the above-mentioned L1, wherein, when multiple L2's are present, two L2's may be bonded to each other; and m1 represents an integer of 1 to 4 and m2 represents an integer of 0 to 3, wherein the sum total of m1 and m2 (i.e., m1+m2) satisfies 3 or 4.)
Recyclable cobalt(0) nanoparticle catalysts for hydrogenations
作者:Philipp Büschelberger、Efrain Reyes-Rodriguez、Christian Schöttle、Jens Treptow、Claus Feldmann、Axel Jacobi von Wangelin、Robert Wolf
DOI:10.1039/c8cy00595h
日期:——
The search for new hydrogenationcatalysts that replace noble metals is largely driven by sustainability concerns and the distinct mechanistic features of 3d transition metals. Several combinations of cobalt precursors and specific ligands in the presence of reductants or under high-thermal conditions were reported to provide activehydrogenationcatalysts. This study reports a new method of preparation
寻找替代贵金属的新型加氢催化剂的主要原因是对可持续性的关注以及3d过渡金属的独特机械特性。据报道,在还原剂存在下或在高温条件下,钴前体和特定配体的几种组合可提供活性加氢催化剂。这项研究报告了一种在不存在配体或表面活性剂的情况下通过还原商业CoCl 2制备小的单分散Co(0)纳米颗粒(3-4 nm)的新方法。在烯烃,炔烃,亚胺和杂芳烃(2–20 bar H 2)的氢化中观察到高催化活性。磁性使催化剂分离和多次回收成为可能。
Amine‐Borane Dehydrogenation and Transfer Hydrogenation Catalyzed by α‐Diimine Cobaltates
作者:Thomas M. Maier、Sebastian Sandl、Ilya G. Shenderovich、Axel Jacobi von Wangelin、Jan J. Weigand、Robert Wolf
DOI:10.1002/chem.201804811
日期:2019.1.2
catalyze the dehydrogenation of several amine‐boranes. Based on the excellent catalytic properties, an especially effective transfer hydrogenation protocol for challenging olefins, imines, and N‐heteroarenes was developed. NH3BH3 was used as a dihydrogen surrogate, which transferred up to two equivalents of H2 per NH3BH3. Detailed spectroscopic and mechanisticstudies are presented, which document the rate
Alkene Hydrogenations by Soluble Iron Nanocluster Catalysts
作者:Tim N. Gieshoff、Uttam Chakraborty、Matteo Villa、Axel Jacobi von Wangelin
DOI:10.1002/anie.201612548
日期:2017.3.20
sustainable synthesis. Alkene hydrogenations have so far been most effectively performed by noble metal catalysts. This study reports an iron‐catalyzed hydrogenation protocol for tri‐ and tetra‐substituted alkenes of unprecedented activity and scope under mild conditions (1–4 bar H2, 20 °C). Instructive snapshots at the interface of homogeneous and heterogeneous ironcatalysis were recorded by the isolation
贵金属技术的替代以及利用地球上丰富的金属实现新的反应性是可持续合成的核心。迄今为止,烯烃加氢最有效地是通过贵金属催化剂进行的。本研究报道了一种铁催化的三取代和四取代烯烃氢化方案,该方案在温和条件(1-4 bar H 2,20 °C)下具有前所未有的活性和范围。通过分离充当催化剂库和颗粒生长的可溶种子的新型铁纳米簇结构,记录了均相和非均相铁催化界面的指导性快照。