摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5-hydroxypentanoate | 59582-58-0

中文名称
——
中文别名
——
英文名称
5-hydroxypentanoate
英文别名
——
5-hydroxypentanoate化学式
CAS
59582-58-0
化学式
C5H9O3
mdl
——
分子量
117.125
InChiKey
PHOJOSOUIAQEDH-UHFFFAOYSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.4
  • 重原子数:
    8
  • 可旋转键数:
    3
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.8
  • 拓扑面积:
    60.4
  • 氢给体数:
    1
  • 氢受体数:
    3

反应信息

  • 作为反应物:
    描述:
    5-hydroxypentanoatechromium(VI) oxide硫酸 作用下, 以 丙酮 为溶剂, 生成 glutarate
    参考文献:
    名称:
    NADH 回收酶 TsaC 和 TsaD 为 Rieske 加氧酶化学再生还原当量
    摘要:
    许多微生物使用生物和非生物分子作为碳和能量来源。这种足智多谋意味着一些微生物具有吸收环境中污染物的机制。其中一种生物体是睾酮丛毛单胞菌,它通过 TsaMBCD 途径代谢 4-甲基苯磺酸盐和 4-甲基苯甲酸盐。 TsaM 是一种 Rieske 加氧酶,它与还原酶 TsaB 一起消耗摩尔当量的 NADH。在此步骤之后,注释的短链脱氢酶/还原酶和乙醛脱氢酶 TsaC 和 TsaD 各自重新生成摩尔当量的 NADH。这种共存改善了对还原当量的化学计量添加的需要,因此代表了将里斯克加氧酶化学整合到生物催化应用中的有吸引力的策略。因此,在这项工作中,为了克服与 Rieske 非血红素铁加氧酶(Rieske 加氧酶)协同作用的 NADH 回收酶信息的缺乏,我们将 TsaC 的 X 射线晶体结构解析到了 2.18 Å 的分辨率。利用这种结构、一系列底物类似物和蛋白质变体组合反应以及差示扫描荧光测定实验,我们确定了参与结合
    DOI:
    10.1016/j.jbc.2023.105222
  • 作为产物:
    描述:
    delta-戊内酯 在 potassium chloride 、 hydroxide 作用下, 以 1,4-二氧六环 为溶剂, 生成 5-hydroxypentanoate
    参考文献:
    名称:
    Barton, Patrick; Laws, Andrew P.; Page, Michael I., Journal of the Chemical Society. Perkin transactions II, 1994, # 9, p. 2021 - 2030
    摘要:
    DOI:
点击查看最新优质反应信息

文献信息

  • Lactones. 2. Enthalpies of hydrolysis, reduction, and formation of the C4-C13 monocyclic lactones. Strain energies and conformations
    作者:Kenneth B. Wiberg、Roy F. Waldron
    DOI:10.1021/ja00020a036
    日期:1991.9
    The enthalpies of hydrolysis of the monocyclic lactones from gamma-butyrolactone to tridecanolactone were determined calorimetrically, and the acyclic ethyl esters having the same number of atoms were studied in the same fashion. The enthalpies of reduction of the lactones to the corresponding alpha,omega-alkanediols with lithium triethylborohydride also were determined. The enthalpies of formation of the lactones and the ethyl esters were derived from these data. They were converted to values for the gas phase by measuring the enthalpies of vaporization of ethyl esters and of lactones. In the cases of gamma-butyrolactone and delta-valerolactone, the enthalpies of formation were in good accord with the previously reported values determined via combustion calorimetry. The strain energies of the lactones were obtained via isodesmic reactions. Valerolactone had a strain energy of 11 kcal/mol, and the largest strain energy was found with octanolactone (13 kcal/mol). The conformations of gamma-butyrolactone and delta-valerolactone were studied via MP2/6-31G* geometry optimizations, and the conformations of the other lactones were studied with use of the molecular mechanics program MM3. The energies of the lactones estimated via molecular mechanics were compared with the experimental results.
  • Properties of 5-Hydroxyvalerate CoA-Transferase from<i>Clostridium aminovalericum</i>
    作者:Ulrich EIKMANNS、Wolfgang BUCKEL
    DOI:10.1515/bchm3.1990.371.2.1077
    日期:1990.1
    5-Hydroxyvalerate CoA-transferase from Clostridium aminovalericum, strain T2-7, was purified approximately 100-fold to homogeneity. The molecular mass of the native enzyme was determined by three different methods to be 178 +/- 11 kDa; that of the subunit was 47 kDa, indicating a homotetrameric structure. The following CoA esters acted as substrates (decreasing specificity, V/Km): 5-hydroxyvaleryl-CoA greater than propionyl-CoA greater than acetyl-CoA greater than (Z)-5-hydroxy-2-pentenoyl-CoA greater than butyryl-CoA greater than valeryl-CoA. 4-Pentenoate and 3-pentenoate were also activated by acetyl-CoA to the corresponding CoA esters, whereas crotonate, (E)-5-hydroxy-2-pentenoate, (E)-2-pentenoate and 2,4-pentadienoate were not attacked. 5-Hydroxyvalerate CoA-transferase showed ping-pong kinetics and was inactivated by sodium boranate only in the presence of a CoA substrate. This indicated the formation of a thiolester between a specific carboxyl group of the enzyme and CoASH during the course of the reaction. The CoA-transferase was inhibited by ATP and CTP, slightly by ADP, GTP and UTP, but not by AMP. The inhibition by ATP was competitive towards CoA esters and noncompetitive towards acetate.
查看更多