摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-(4-氟苯基)-4-硝基苯 | 398-24-3

中文名称
1-(4-氟苯基)-4-硝基苯
中文别名
——
英文名称
4-fluoro-4'-nitro-1,1'-biphenyl
英文别名
4-fluoro-4'-nitrobiphenyl;4-nitro-4'-fluorobiphenyl;1-(4-fluorophenyl)-4-nitrobenzene
1-(4-氟苯基)-4-硝基苯化学式
CAS
398-24-3
化学式
C12H8FNO2
mdl
——
分子量
217.199
InChiKey
GMPGAPATPBXNSX-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.9
  • 重原子数:
    16
  • 可旋转键数:
    1
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    45.8
  • 氢给体数:
    0
  • 氢受体数:
    3

安全信息

  • 海关编码:
    2904909090

SDS

SDS:c757b778b55290b3b1b875703597aa05
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    1-(4-氟苯基)-4-硝基苯盐酸 、 palladium on activated charcoal 、 氢气 、 sodium nitrite 作用下, 以 乙醇 为溶剂, 生成 4-fluoro-4'-iodo-1,1'-biphenyl
    参考文献:
    名称:
    Design and synthesis of boronic acid inhibitors of endothelial lipase
    摘要:
    Endothelial lipase (EL) and lipoprotein lipase (LPL) are homologous lipases that act on plasma lipoproteins. EL is predominantly a phospholipase and appears to be a key regulator of plasma HDL-C. LPL is mainly a triglyceride lipase regulating (V)LDL levels. The existing biological data indicate that inhibitors selective for EL over LPL should have anti-atherogenic activity, mainly through increasing plasma HDL-C levels. We report here the synthesis of alkyl, aryl, or acyl-substituted phenylboronic acids that inhibit EL. Many of the inhibitors evaluated proved to be nearly equally potent against both EL and LPL, but several exhibited moderate to good selectivity for EL. (C) 2011 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmcl.2011.12.043
  • 作为产物:
    描述:
    4-氟联苯 在 dinitrogen tetraoxide 作用下, 以 二氯甲烷 为溶剂, 反应 48.0h, 以89%的产率得到1-(4-氟苯基)-4-硝基苯
    参考文献:
    名称:
    Conformational Heterogeneity of Arylamine-Modified DNA:  19F NMR Evidence
    摘要:
    One- and two-dimensional F-19 NMR spectroscopy was used to investigate the conformational heterogeneity of two arylamine-modified DNA duplexes, d[CTTCTTG*ACCTC]. d[GAGGTCAAGAAG], in which G* is either N-(deoxyguanosin-8-yl)-4'-fluoro-4-aminobiphenyl (dG-C8-FABP) (I) or N-(deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene (dG-C8-FAF (II). The F-19 NMR spectrum of I showed a single peak, while that of II revealed two prominent signals with a 55:45 ratio, in good agreement with previous H-1 NMR results (Cho et al. Biochemistry 1992, 31, 9587-9602; 1994, 33, 1373-1384). Slow interconversion between the two conformations of II was established by temperature-dependent two-dimensional F-19 NMR chemical exchange spectre. On the basis of magnetic anisotropy effects and isotopic solvent-induced shifts, the F-19 signals at -117.31 and -118.09 ppm in the F-19 NMR spectrum of II were assigned to a relatively undisturbed ''B-type'' conformer and a highly perturbed ''stacked'' conformer, respectively. Analysis of the temperature dependent (5-40 degrees C) line shapes by computer simulation yielded an interconversion barrier (Delta G(double dagger) of 14.0 kcal/mol with a chemical exchange time of 2 ms at 30 degrees C. This new F-19 approach should be very useful in investigating the sequence-dependent conformational heterogeneity of arylamine-modified DNA.
    DOI:
    10.1021/ja9632771
点击查看最新优质反应信息

文献信息

  • Water-Soluble Ionic Palladium Complexes: Effect of Pendant Ionic Groups on Palladium Nanoparticles and Suzuki-Miyaura Reaction in Neat Water
    作者:Liuyi Li、Tao Wu、Jinyun Wang、Ruihu Wang
    DOI:10.1002/cplu.201300374
    日期:2014.2
    Suzuki-Miyaura cross-coupling reaction, and high catalytic activities of aryl bromides and chlorides are achieved in neat water. The mercury drop test, poison experiments, and TEM analysis are used to demonstrate the formation of palladium nanoparticles (NPs) after the catalytic reaction. The effects of pendant ionic groups in L1-L3 on the catalytic activities and structures of the palladium NPs are disclosed
    通过2,2'-联吡啶胺的烷基化和季铵化反应,可以轻松合成三个离子型氮原子螯合配体(L1-L3)。通过使用密度泛函理论计算来实现其阳离子的电荷分布和自然键轨道分析。通过使用铃木-宫浦(Suzuki-Miyaura)交叉偶联反应初步评估了它们的水溶性钯配合物的催化性能,并在纯净水中实现了芳基溴化物和氯化物的高催化活性。汞滴试验,毒物实验和TEM分析用于证明催化反应后钯纳米颗粒(NPs)的形成。公开了L1-L3中的离子侧基对钯NPs的催化活性和结构的影响。这些NP在水中稳定数周。它们通过2,2'-联吡啶氨基与钯NP表面的螯合配位与L1-L3中离子基团的静电排斥之间的协同相互作用而稳定。
  • Palladium nanoparticle supported on nitrogen‐doped porous carbon: Investigation of structural properties and catalytic activity on Suzuki–Miyaura reactions
    作者:Nesrin Buğday、Serdar Altın、Sedat Yaşar
    DOI:10.1002/aoc.6403
    日期:2021.11
    imidazolate framework (aZIF) was synthesized and used as an efficient catalyst on Suzuki–Miyaura cross-coupling reactions of aryl bromides. With this developed catalytic system, the Suzuki–Miyaura cross-coupling reaction was accomplished in aqueous solutions, and biaryls were obtained in good to excellent yields in a short reaction time. The APC-750@Pd catalyst was characterized by Fourier Transform Infrared
    合成了通过非晶沸石咪唑酯骨架(aZIF)热解获得的新型钯掺杂纳米多孔碳复合材料,并将其用作芳基溴化物 Suzuki-Miyaura 交叉偶联反应的有效催化剂。使用这种开发的催化体系,Suzuki-Miyaura 交叉偶联反应在水溶液中完成,并且在很短的反应时间内以良好到极好的收率获得了联芳基化合物。APC-750@Pd催化剂通过傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)、热重量分析 (TGA)、差热分析 (DTA)、电感耦合等离子体质谱 (ICP-MS) 和 Brunauer-Emmett-Teller (BET) 分析技术。N 掺杂的多孔碳材料 (NPC-1000) 是通过热解 aZIF 合成的。活性多孔碳材料 (APC-750) 是通过在 750°C 下与来自 NPC-1000 的 KOH 熔融制备的。APC-750@Pd
  • Silylated organometals: a family of recyclable homogeneous catalysts
    作者:Jian-Lin Huang、Jun-Zhong Wang、He-Xing Li、Haibing Guo、George A. O'Doherty
    DOI:10.1039/c4gc01586j
    日期:——

    A general and facile approach was developed to synthesize a family of silylated organometals, which were used as homogeneous (chiral) catalysts in THF-, CH2Cl2-, or toluene-medium organic reactions and could be completely recycled by adding pentane and then used repeatedly many times without a significant decrease in catalytic efficiencies.

    开发了一种通用且简便的方法,用于合成一系列硅烷基有机金属化合物家族,这些化合物被用作均相(手性)催化剂,在THF、CH2Cl2或甲苯介质有机反应中,并且可以通过添加戊烷完全回收,然后可以多次重复使用而不会显著降低催化效率。
  • A Deacetylation-Diazotation-Coupling Sequence: Palladium- Catalyzed CC Bond Formation with Acetanilides as Formal Leaving Groups
    作者:Bernd Schmidt、René Berger
    DOI:10.1002/adsc.201200929
    日期:2013.2.1
    Acetanilides can be deacetylated and diazotized in situ, and subsequently used in Pd-catalyzed coupling reactions without isolation of the diazonium intermediate. Heck reactions, Suzuki cross-coupling reactions, and a Pd-catalyzed [2+2+1] cycloaddition have been investigated as terminating CC bond-forming steps of this one-flask sequence. The sequence does not require the exchange of solvents or removal
    乙酰苯胺可以原位脱乙酰化和重氮化,然后在不分离重氮中间体的情况下用于Pd催化的偶联反应中。Heck反应,Suzuki交叉偶联反应和Pd催化的[2 + 2 + 1]环加成反应已作为该一瓶序列的终止CC键形成步骤进行了研究。该顺序不需要在各个步骤之间交换溶剂或除去副产物,而是在适当的时候通过添加试剂和催化剂来进行。
  • Modular and Selective Arylation of Aryl Germanes (C−GeEt <sub>3</sub> ) over C−Bpin, C−SiR <sub>3</sub> and Halogens Enabled by Light‐Activated Gold Catalysis
    作者:Grant J. Sherborne、Avetik G. Gevondian、Ignacio Funes‐Ardoiz、Amit Dahiya、Christoph Fricke、Franziska Schoenebeck
    DOI:10.1002/anie.202005066
    日期:2020.9
    rapid and programmable construction of bi‐ or multiaryls. To this end, the next frontier of synthetic modularity will likely arise from harnessing the coupling space that is orthogonal to the powerful Pd‐catalyzed coupling regime. This report details the realization of this concept and presents the fully selective arylation of aryl germanes (which are inert under Pd0/PdII catalysis) in the presence of
    选择性 C -C偶联是快速、可编程构建双芳基或多芳基的强大策略。为此,合成模块化的下一个前沿可能会产生于利用与强大的 Pd 催化耦合机制正交的耦合空间。该报告详细介绍了这一概念的实现,并提出了在有价值的官能团 C−BPin、C−SiMe 3、C−I、C存在下,芳基锗烷(在 Pd 0 /Pd II催化下呈惰性)的完全选择性芳基化−Br、C−Cl,这反过来又提供了多样化的多样化机会。该方案利用可见光激活与金催化相结合,促进 C−Ge 与芳基重氮盐的选择性偶联。与之前专门针对Ar-N 2 +范围的光/金催化的 Ar-N 2 +偶联相反,我们提出了有效偶联富电子、缺电子、杂环和位阻芳基重氮盐的条件。我们的计算数据表明,虽然缺电子的 Ar-N 2 +盐在蓝光照射下很容易被金激活,但对于激发的富电子 Ar-N 2 +存在竞争性解离失活途径,这需要替代的光-氧化还原方法可实现高效耦合。
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐