摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(5S)-5-amino-6-hydroxy-6-oxohexanoate

中文名称
——
中文别名
——
英文名称
(5S)-5-amino-6-hydroxy-6-oxohexanoate
英文别名
——
(5S)-5-amino-6-hydroxy-6-oxohexanoate化学式
CAS
——
化学式
C6H10NO4-
mdl
——
分子量
160.15
InChiKey
OYIFNHCXNCRBQI-BYPYZUCNSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -1.9
  • 重原子数:
    11
  • 可旋转键数:
    3
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.67
  • 拓扑面积:
    108
  • 氢给体数:
    1
  • 氢受体数:
    4

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Characterization of the human gene encoding α-aminoadipate aminotransferase (AADAT)
    摘要:
    In mammals, the conversion of alpha-aminoadipate to alpha-ketoadipate by alpha-aminoadipate aminotransferase (AADAT) is an intermediate step in lysine degradation. A gene encoding for alpha-aminoadipate aminotransferase and kynurenine aminotransferase activites had been previously identified in the rat (KAT/AadAT). We identified the human gene (AADAT) encoding for AADAT. It has a 2329bp cDNA, a 1278bp open-reading frame, and is predicted to encode 425 amino acids with a mitochondrial cleavage signal and a pyridoxal-phosphate binding site. AADAT is 73% and 72% identical to the mouse and rat orthologs, respectively. The genomic structure spans 30kb and consists of 13 exons. FISH studies localized the gene to 4q32.2. Two transcripts (similar to2.9 and similar to4.7 kb) were identified, with expression highest in liver. Bacterial expression studies confirm that the gene encodes for AADAT activity. The availability of the DNA sequence and enzyme assay will allow further evaluation of individuals suspected to have defects in this enzyme. (C) 2002 Elsevier Science (USA). All rights reserved.
    DOI:
    10.1016/s1096-7192(02)00037-9
  • 作为产物:
    描述:
    adenosine 5'-monophosphatepyrophosphoric acidO-(S-L-2-aminoadipylpantetheine-4'-phosphoryl)-L-serine residue 生成 adenosine 5'-triphosphateO-(pantetheine-4ʼ-phosphoryl)-L-serine residue 、 (5S)-5-amino-6-hydroxy-6-oxohexanoate
    参考文献:
    名称:
    Lysine Biosynthesis in Saccharomyces cerevisiae:  Mechanism of α-Aminoadipate Reductase (Lys2) Involves Posttranslational Phosphopantetheinylation by Lys5
    摘要:
    A key step in fungal biosynthesis of lysine, enzymatic reduction of alpha-aminoadipate at C-6 to the semialdehyde, requires two gene products in Saccharomyces cerevisiae, Lys2 and Lys5. Here, we show that the 31-kDa Lys5 is a specific posttranslational modification catalyst, using coenzyme A (CoASH) as a cosubstrate to phosphopantetheinylate Ser(880) of the 155-kDa Lys2 and activate it for catalysis. Lys2 was subcloned from S. cerevisiae and expressed in and purified from Escherichia coli as a full-length 155-kDa enzyme, as a 105-kDa adenylation/peptidyl carrier protein (A/PCP) fragment (residues 1-924), and as a 14-kDa PCP fragment (residues 809-924). The apo-PCP fragment was covalently modified to phosphopantetheinylated holo-PCP by pure Lys5 and CoASH with a K-m of 1 mu M and k(cat) of 3 min(-1) for both the PCP and CoASH substrates. The adenylation domain of the A/PCP fragment activated S-carboxymethyl-L-cysteine (k(cat)/K-m = 840 mM(-1) min(-1)) at 16% the efficiency of L-alpha-aminoadipate in [P-32]PPi/ATP exchange assays. The hole form of the A/PCP 105-kDa fragment of Lys2 covalently aminoacylated its elf with [S-35]S-carboxymethyl-L-cysteine. Addition of NADPH discharged the covalent acyl-S-PCP Lys2, consistent with a reductive cleavage of the acyl-S-enzyme intermediate. These results identify the Lys5/Lys2 pair as a two-component system in which Lys5 covalently primes Lys2, allowing alpha-aminoadipate reductase activity by holo-Lys2 with catalytic cycles of autoaminoacylation and reductive cleavage. This is a novel mechanism for a fungal enzyme essential for amino acid metabolism.
    DOI:
    10.1021/bi9829940
点击查看最新优质反应信息

文献信息

  • Investigations into the post-translational modification and mechanism of isopenicillin N:acyl-CoA acyltransferase using electrospray mass spectrometry
    作者:R T Aplin、J E Baldwin、P L Roach、C V Robinson、C J Schofield
    DOI:10.1042/bj2940357
    日期:1993.9.1

    Electrospray mass spectrometry (e.s.m.s.) was used to confirm the position of the post-translational cleavage of the isopenicillin N:acyl-CoA acyltransferase preprotein to give the alpha- and beta-subunits. The e.s.m.s. studies suggested partial modification of the alpha-subunit in vivo by exogenously added substituted acetic acids. E.s.m.s. has also allowed the observation in vitro of the transfer of the acyl group from several acyl-CoAs to the beta-subunit. N.m.r. data for the CoA species have been deposited as Supplementary Publication SUP 500173 (2 pages) at the British Library Document Supply Centre (DSC), Boston Spa, Wetherby, West Yorkshire LS23 7BQ, from whom copies can be obtained on the terms indicated in Biochem. J. (1993) 289, 9.

    电喷雾质谱法(E.S.M.S.)被用于确认异青霉素N:酰基辅酶A酰转移酶前体的翻译后剪切位置,以得到α-和β-亚基。E.S.M.S.研究表明α-亚基在体内部分被外源性添加的取代乙酸修饰。E.S.M.S.还允许观察多种酰基辅酶A向β-亚基的转移。CoA物种的N.M.R.数据已经作为补充出版物SUP 500173(2页)存放在英国图书馆文献供应中心(DSC),Wetherby,West Yorkshire LS23 7BQ,可按照Biochem. J.(1993)289,9中所示的条款获得副本。
  • Molecular characterization of the acyl-coenzyme A:isopenicillin N acyltransferase gene (penDE) from Penicillium chrysogenum and Aspergillus nidulans and activity of recombinant enzyme in Escherichia coli
    作者:M B Tobin、M D Fleming、P L Skatrud、J R Miller
    DOI:10.1128/jb.172.10.5908-5914.1990
    日期:1990.10
    The final step in the biosynthesis of beta-lactam antibiotics in Penicillium chrysogenum and Aspergillus nidulans involves removal of the L-alpha-aminoadipyl side chain from isopenicillin N (IPN) and exchange with a nonpolar side chain. The enzyme catalyzing this reaction, acyl-coenzyme A:isopenicillin N acyltransferase (acyltransferase), was purified from P. chrysogenum and A. nidulans. Based on NH2-terminal
    在产黄青霉和构巢曲霉中生物合成β-内酰胺抗生素的最后一步涉及从异青霉素N(IPN)去除L-α-氨基己二酰侧链并与非极性侧链交换。从产黄青霉和构巢曲霉中纯化出催化该反应的酶,酰基辅酶A:异青霉素N酰基转移酶(酰基转移酶)。根据NH2端氨基酸序列信息,克隆了产黄青霉和构巢曲霉的酰基转移酶基因(penDE)。在这两种生物中,penDE都位于异青霉素N合成酶基因(pcbC)的下游,由四个编码357个氨基酸(约40道尔顿[kDa])的外显子组成。DNA编码序列显示出约73%的同一性,而氨基酸序列大约有76%相同。非编码DNA区域(包括pcbC和penDE之间的区域)不保守。产生40kDa蛋白的大肠杆菌的酰基转移酶活性以6-氨基青霉酸或IPN为底物,并在苯乙酰辅酶A存在的情况下成为对青霉素酶敏感的抗生素。因此,单个基因负责将IPN转化为青霉素G该酶的活性形式可以由将40kDa的单体前体加工成含有11kDa和29kDa的亚基的异二聚体产生。
  • Substrate specificity and structure of human aminoadipate aminotransferase/kynurenine aminotransferase II
    作者:Qian Han、Tao Cai、Danilo A. Tagle、Howard Robinson、Jianyong Li
    DOI:10.1042/bsr20080085
    日期:2008.8.1

    KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-D-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to α-oxoadipate; therefore it was initially named AADAT (aminoadipate aminotransferase). As an endotoxin, aminoadipate influences various elements of glutamatergic neurotransmission and kills primary astrocytes in the brain. A number of studies dealing with the biochemical and functional characteristics of this enzyme exist in the literature, but a systematic assessment of KAT II addressing its substrate profile and kinetic properties has not been performed. The present study examines the biochemical and structural characterization of a human KAT II/AADAT. Substrate screening of human KAT II revealed that the enzyme has a very broad substrate specificity, is capable of catalysing the transamination of 16 out of 24 tested amino acids and could utilize all 16 tested α-oxo acids as amino-group acceptors. Kinetic analysis of human KAT II demonstrated its catalytic efficiency for individual amino-group donors and acceptors, providing information as to its preferred substrate affinity. Structural analysis of the human KAT II complex with α-oxoglutaric acid revealed a conformational change of an N-terminal fraction, residues 15–33, that is able to adapt to different substrate sizes, which provides a structural basis for its broad substrate specificity.

    KAT(犬尿氨酸氨基转移酶)Ⅱ是大脑中催化犬尿氨酸转化为 KYNA(犬尿酸)的主要酶。KYNA 是唯一已知的 N-甲基-D-天冬氨酸受体内源性拮抗剂。这种酶还能催化氨基己二酸向α-氧代己二酸的转化,因此最初被命名为 AADAT(氨基己二酸氨基转移酶)。作为一种内毒素,氨基己二酸盐会影响谷氨酸能神经传递的各种因素,并杀死大脑中的原发性星形胶质细胞。文献中有许多关于这种酶的生物化学和功能特性的研究,但尚未对 KAT II 的底物概况和动力学特性进行系统评估。本研究探讨了人 KAT II/AADAT 的生化和结构特征。人 KAT II 的底物筛选显示,该酶具有非常广泛的底物特异性,能够催化 24 种测试氨基酸中 16 种氨基酸的转氨基反应,并能利用所有 16 种测试的 α-氧代酸作为氨基基团接受体。对人类 KAT II 的动力学分析表明了它对单个氨基基团供体和受体的催化效率,从而提供了有关其首选底物亲和性的信息。对人 KAT II 与 α-oxoglutaric acid 复合物的结构分析表明,其 N 端部分残基 15-33 发生了构象变化,能够适应不同大小的底物,这为其广泛的底物特异性提供了结构基础。
  • Cloning and Characterization of pcd Encoding  '-Piperideine-6-Carboxylate Dehydrogenase from Flavobacterium lutescens IFO3084
    作者:T. Fujii、T. Narita、H. Agematu、N. Agata、K. Isshiki
    DOI:10.1093/oxfordjournals.jbchem.a022849
    日期:2000.12.1
    The pcd gene from Flavobacterium lutescens IFO3084 encoding Δ'-piperideine-6-carbox-ylate dehydrogenase (PCD) was cloned, sequenced, and expressed in Escherichia coli. The deduced amino acid sequence of PCD from F. lutescens IFO3084 showed strong similarity to that from Streptomyces clavuligerus. The molecular mass of the recombinant PCD was estimated to be approximately 58,000 Da by SDS-PAGE and native PAGE, which indicated that the enzyme molecule is a monomer. The in vitro analysis of l-α-aminoadipic acid (l-AAA) production showed that l-AAA is synthesized from l-lysine in two steps catalyzed by l-lysine 6-aminotransferase (LAT) and PCD from F. lutescens IFO3084.
    克隆、测序并在大肠杆菌中表达了黄杆菌(Flavobacterium lutescens IFO3084)的 pcd 基因,该基因编码Δ'-哌啶-6-羧酸脱氢酶(PCD)。从 F. lutescens IFO3084 中推导出的 PCD 氨基酸序列与从 Streptomyces clavuligerus 中推导出的 PCD 氨基酸序列非常相似。经 SDS-PAGE 和原生 PAGE 测定,重组 PCD 的分子质量约为 58,000 Da,表明该酶分子为单体。l-α-氨基己二酸(l-AAA)的体外生产分析表明,l-AAA是由l-赖氨酸在l-赖氨酸6-氨基转移酶(LAT)和来自F. lutescens IFO3084的PCD催化下分两步合成的。
  • Purification and characterization of <i>δ</i>-(<scp>l</scp>-<i>α</i>-aminoadipyl)-<scp>l</scp>-cysteinyl-<scp>d</scp>-valine synthetase from Penicillium chrysogenum
    作者:Hanne B.Aa. THEILGAARD、Klaus N. KRISTIANSEN、Claus M. HENRIKSEN、Jens NIELSEN
    DOI:10.1042/bj3270185
    日期:1997.10.1

    δ-(L-α-Aminoadipyl)-L-cysteinyl-d-valine synthetase (ACVS) from Penicillium chrysogenum was purified to homogeneity by a combination of (NH4)2SO4 precipitation, protamine sulphate treatment, ion-exchange chromatography, gel filtration and hydrophobic interaction chromatography. The molecular mass of ACVS was estimated with native gradient gel electrophoresis and SDS/PAGE. The native enzyme consisted of a single polymer chain with an estimated molecular mass of 470 kDa. The denatured enzyme had an estimated molecular mass of 440 kDa. The influence of different reaction parameters such as substrates, cofactors and pH on the activity of the purified ACVS was investigated. The Km values for the three precursor substrates L-α-aminoadipic acid, L-cysteine and L-valine were determined as 45, 80 and 80 μM respectively, and the optimal assay concentration of ATP was found to be 5 mM (with 20 mM MgCl2). The dimer of the reaction product bis-δ-(L-α-aminoadipyl)-l-cysteinyl-D-valine (bisACV) gave feedback inhibition of the purified ACVS; the inhibition parameter KbisACV was determined as 1.4 mM. Furthermore dithiothreitol was shown to inhibit the purified ACVS. From the addition of a glucose pulse to a steady-state glucose-limited continuous culture of P. chrysogenum it was found that there is glucose repression of the synthesis of ACVS and that there must be a constant turnover of ACVS owing to synthesis and degradation.

    从金黄色链霉菌中纯化出δ-(L-α-氨基己二酸)-L-半胱氨酰-D-缬氨酸合成酶(ACVS),通过(NH4)2SO4沉淀、精胺硫酸盐处理、离子交换层析、凝胶过滤和疏水相互作用层析的组合纯化方法,达到了同质性。使用原生梯度凝胶电泳和SDS/PAGE估计了ACVS的分子量。原生酶由单个聚合物链组成,估计的分子量为470 kDa。变性酶估计的分子量为440 kDa。研究了不同反应参数,如底物、辅因子和pH对纯化ACVS的活性的影响。三种前体底物L-α-氨基己二酸、L-半胱氨酸和L-缬氨酸的Km值分别为45、80和80 μM,最佳测定ATP浓度为5 mM(含20 mM MgCl2)。反应产物双-δ-(L-α-氨基己二酸)-L-半胱氨酰-D-缬氨酸(bisACV)的二聚体对纯化ACVS产生反馈抑制;抑制参数KbisACV确定为1.4 mM。此外,二硫苏糖醇被证明也能抑制纯化的ACVS。通过向P. chrysogenum的稳态葡萄糖限制连续培养中添加葡萄糖脉冲,发现ACVS的合成受到葡萄糖抑制,并且由于合成和降解必须存在ACVS的恒定周转。
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物