Material Safety Data Sheet Section 1. Identification of the substance N-Decylboronic acid Product Name: Synonyms: Section 2. Hazards identification Harmful by inhalation, in contact with skin, and if swallowed. H315: Causes skin irritation H319: Causes serious eye irritation H335: May cause respiratory irritation P261: Avoid breathing dust/fume/gas/mist/vapours/spray Wear protective gloves/protective clothing/eye protection/face protection P280: P305+P351+P338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do – continue rinsing P304+P340: IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing P405: Store locked up Section 3. Composition/information on ingredients. N-Decylboronic acid Ingredient name: CAS number: 24464-63-9 Section 4. First aid measures Immediately wash skin with copious amounts of water for at least 15 minutes while removing Skin contact: contaminated clothing and shoes. If irritation persists, seek medical attention. Eye contact: Immediately wash skin with copious amounts of water for at least 15 minutes. Assure adequate flushing of the eyes by separating the eyelids with fingers. If irritation persists, seek medical attention. Inhalation: Remove to fresh air. In severe cases or if symptoms persist, seek medical attention. Wash out mouth with copious amounts of water for at least 15 minutes. Seek medical attention. Ingestion: Section 5. Fire fighting measures In the event of a fire involving this material, alone or in combination with other materials, use dry powder or carbon dioxide extinguishers. Protective clothing and self-contained breathing apparatus should be worn. Section 6. Accidental release measures Personal precautions: Wear suitable personal protective equipment which performs satisfactorily and meets local/state/national standards. Respiratory precaution: Wear approved mask/respirator Hand precaution: Wear suitable gloves/gauntlets Skin protection: Wear suitable protective clothing Eye protection: Wear suitable eye protection Methods for cleaning up: Mix with sand or similar inert absorbent material, sweep up and keep in a tightly closed container for disposal. See section 12. Environmental precautions: Do not allow material to enter drains or water courses. Section 7. Handling and storage Handling: This product should be handled only by, or under the close supervision of, those properly qualified in the handling and use of potentially hazardous chemicals, who should take into account the fire, health and chemical hazard data given on this sheet. Store in closed vessels, under −20◦C. Storage: Section 8. Exposure Controls / Personal protection Engineering Controls: Use only in a chemical fume hood. Personal protective equipment: Wear laboratory clothing, chemical-resistant gloves and safety goggles. General hydiene measures: Wash thoroughly after handling. Wash contaminated clothing before reuse. Section 9. Physical and chemical properties Not specified Appearance: Boiling point: No data Melting point: No data Flash point: No data Density: No data Molecular formula: C10H23BO2 Molecular weight: 186.1 Section 10. Stability and reactivity Conditions to avoid: Heat, flames and sparks. Materials to avoid: Oxidizing agents. Possible hazardous combustion products: Carbon monoxide. Section 11. Toxicological information No data. Section 12. Ecological information No data. Section 13. Disposal consideration Arrange disposal as special waste, by licensed disposal company, in consultation with local waste disposal authority, in accordance with national and regional regulations. Section 14. Transportation information Non-harzardous for air and ground transportation. Section 15. Regulatory information No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302, or have known CAS numbers that exceed the threshold reporting levels established by SARA Title III, Section 313.
A visible‐light‐promoted aerobicoxidativehydroxylation of boronic acidsusing phthalocyanine zinc as an easily available photosensitizer has been developed. It provided a direct access to synthesize aliphatic alcohols and phenols from boronic acids. The advantages of this approach included the low catalyst loading (0.5 mol%), high efficient, the use of O2 as an oxygen source, wide substrate range
Oxidation with air by ascorbate-driven quinone redox cycling
作者:Gastón Silveira-Dorta、Diego M. Monzón、Fernando P. Crisóstomo、Tomás Martín、Víctor S. Martín、Romen Carrillo
DOI:10.1039/c5cc01519g
日期:——
Transition metal-free oxidation with air at room temperature has been achieved by simply using ascorbate (vitamin C) and catalytic amounts of menadione (vitaminK3). A combination of the mentioned vitamins transforms atmospheric oxygen into hydrogen peroxide, which is able to oxidize arylboronic acids and other chemical moieties.
Photoinducedhydroxylation of boronic acids with molecular oxygen under photocatalyst-free conditions is reported, providing a green entry to a variety of phenols and aliphatic alcohols in a highly concise fashion. This new protocol features photocatalyst-free conditions, wide substrate scope and excellent functional group compatibility.
Sustainable oxidations with air mediated by gallic acid: potential applicability in the reutilization of grape pomace
作者:Jimena Scoccia、Marcelle D. Perretti、Diego M. Monzón、Fernando P. Crisóstomo、Víctor S. Martín、Romen Carrillo
DOI:10.1039/c5gc02966j
日期:——
Tannins like gallicacid and even grape pomace extract are able to perform oxidations with air thus unleashing an alternative method for reutilization and valorization of bio-wastes.