摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-乙炔环丙基)苯 | 139633-98-0

中文名称
1-乙炔环丙基)苯
中文别名
(1-乙炔基环丙基)苯
英文名称
(1-ethynylcyclopropyl)benzene
英文别名
——
1-乙炔环丙基)苯化学式
CAS
139633-98-0
化学式
C11H10
mdl
MFCD11109424
分子量
142.2
InChiKey
JZMJNHMUPFGYFK-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    199.1±10.0 °C(Predicted)
  • 密度:
    1.02±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    3.1
  • 重原子数:
    11
  • 可旋转键数:
    2
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.272
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

安全信息

  • 海关编码:
    2902909090
  • 危险性防范说明:
    P305+P351+P338
  • 危险性描述:
    H227,H315,H319,H335

SDS

SDS:ca2014c5cb5af3051968d33aab0ac85b
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    1-乙炔环丙基)苯2-溴吡啶-1-氧化物甲烷磺酸 、 Bis(2,4-ditert-butylphenoxy)-[2-(2,4,6-trimethoxyphenyl)phenyl]phosphane;bis(trifluoromethylsulfonyl)azanide;gold(1+) 作用下, 以 氯仿 为溶剂, 反应 0.5h, 以53%的产率得到Spiro-2'-one
    参考文献:
    名称:
    联芳基亚膦酸酯金(I)配合物是将炔丙基芳烃氧化环化为Indan-2-one的高级催化剂
    摘要:
    打击金:通过新的金(I)催化的氧化环化工艺,一系列功能化的丙炔基芳烃被顺利转化为茚满-2-酮。就本转化而言,就收率和动力学而言,[ L Au] NTf 2(Tf =三氟甲磺酰基)是优良的催化剂。
    DOI:
    10.1002/anie.201301015
  • 作为产物:
    描述:
    1-苯基-1-环丙羧酸 在 lithium aluminium tetrahydride 、 potassium carbonatepyridinium chlorochromate 作用下, 以 四氢呋喃甲醇乙醚二氯甲烷 为溶剂, 反应 17.0h, 生成 1-乙炔环丙基)苯
    参考文献:
    名称:
    [EN] INHIBITORS OF HEPATITIS C VIRUS POLYMERASE
    [FR] INHIBITEURS DE LA POLYMÉRASE DU VIRUS DE L'HÉPATITE C
    摘要:
    本发明提供了一种由一般式(I)表示的化合物及其药用盐,其中X、Y、R1A、R1B、R2和R3如本文中的类和子类中所定义,并包括含有这种化合物的组合物(例如,药物组合物),这些化合物可用作丙型肝炎病毒聚合酶的抑制剂,因此可用作治疗HCV感染的药物。
    公开号:
    WO2012083105A1
点击查看最新优质反应信息

文献信息

  • Nanoscale synthesis and affinity ranking
    作者:Nathan J. Gesmundo、Bérengère Sauvagnat、Patrick J. Curran、Matthew P. Richards、Christine L. Andrews、Peter J. Dandliker、Tim Cernak
    DOI:10.1038/s41586-018-0056-8
    日期:2018.5
    Most drugs are developed through iterative rounds of chemical synthesis and biochemical testing to optimize the affinity of a particular compound for a protein target of therapeutic interest. This process is challenging because candidate molecules must be selected from a chemical space of more than 1060 drug-like possibilities 1 , and a single reaction used to synthesize each molecule has more than 107 plausible permutations of catalysts, ligands, additives and other parameters 2 . The merger of a method for high-throughput chemical synthesis with a biochemical assay would facilitate the exploration of this enormous search space and streamline the hunt for new drugs and chemical probes. Miniaturized high-throughput chemical synthesis3–7 has enabled rapid evaluation of reaction space, but so far the merger of such syntheses with bioassays has been achieved with only low-density reaction arrays, which analyse only a handful of analogues prepared under a single reaction condition8–13. High-density chemical synthesis approaches that have been coupled to bioassays, including on-bead 14 , on-surface 15 , on-DNA 16 and mass-encoding technologies 17 , greatly reduce material requirements, but they require the covalent linkage of substrates to a potentially reactive support, must be performed under high dilution and must operate in a mixture format. These reaction attributes limit the application of transition-metal catalysts, which are easily poisoned by the many functional groups present in a complex mixture, and of transformations for which the kinetics require a high concentration of reactant. Here we couple high-throughput nanomole-scale synthesis with a label-free affinity-selection mass spectrometry bioassay. Each reaction is performed at a 0.1-molar concentration in a discrete well to enable transition-metal catalysis while consuming less than 0.05 milligrams of substrate per reaction. The affinity-selection mass spectrometry bioassay is then used to rank the affinity of the reaction products to target proteins, removing the need for time-intensive reaction purification. This method enables the primary synthesis and testing steps that are critical to the invention of protein inhibitors to be performed rapidly and with minimal consumption of starting materials. A system that combines nanoscale synthesis and affinity ranking enables high-throughput screening of reaction conditions and bioactivity for a given protein target, accelerating the process of drug discovery.
    大多数药物都是通过反复的化学合成和生化测试来开发,以优化特定化合物与治疗感兴趣的蛋白质靶点的亲和力。这一过程颇具挑战性,因为候选分子必须从超过10^60种类药物可能性的化学空间中选出,而用于合成每个分子的单一反应中催化剂、配体、添加剂和其他参数的合理排列组合超过10^7种。将高通量化学合成方法与生化分析方法相结合,将有助于探索这一巨大的搜索空间,并简化新型药物和化学探针的寻找过程。微型化高通量化学合成技术已经能够快速评估反应空间,但迄今为止,这种合成方法与生物分析方法的结合,仅限于低密度反应阵列,即在单一反应条件下仅分析少量类似物。高密度化学合成方法与生物分析方法相结合,包括使用珠子上、表面上、DNA上和质量编码等技术,大大减少了材料需求,但这些方法要求底物与潜在的反应性载体共价连接,必须在高度稀释的情况下进行,并且必须在混合物的形式下运作。这些反应特性限制了过渡属催化剂的应用,因为过渡属催化剂很容易受到复杂混合物中存在的多种官能团的毒害,而且对于动力学需要高浓度反应物的反应过程也不适用。本研究将高通量纳摩尔级合成与无标记的亲和选择质谱生物分析相结合,使得每个反应在0.1摩尔浓度的条件下进行,既可能实现过渡属催化,又使得每个反应消耗的底物不足0.05毫克。然后,使用亲和选择质谱生物分析法对反应产物与靶蛋白的亲和力进行排序,省去了耗时的反应纯化步骤。该方法使得对蛋白质抑制剂发明至关重要的初级合成和测试步骤能够快速完成,且起始材料消耗最小。纳米级合成和亲和力排序相结合的系统可以实现对给定蛋白质靶点的反应条件和生物活性进行高通量筛选,从而加速药物发现过程。
  • Rhodium-Catalyzed Dehydrogenative Cycloisomerization of Dienylcyclopropane to Highly Substituted Toluene
    作者:Wo Nie、Shichao Shen、Cheng Ma
    DOI:10.1021/acs.orglett.1c01265
    日期:2021.6.4
    A rhodium-catalyzed dehydrogenative cycloisomerization of dienylcyclopropane compounds is reported, which provides a straightforward approach to a variety of highly substituted toluene derivatives in 67–85% yields. The dienylcyclopropane-imides are produced by a single-step formal three-component olefination procedure. Preliminary mechanistic studies indicated that an electron-withdrawing group as
    报道了催化的二烯基环丙烷化合物的脱氢环异构化,它为各种高度取代的甲苯生物提供了一种直接的方法,产率为 67-85%。二烯基环丙烷-酰亚胺通过一步正式的三组分烯化程序生产。初步的机理研究表明,作为 R 的吸电子基团在完成这种转变中起着关键作用。
  • Rh-catalysed [5 + 1] cycloaddition of allenylcyclopropanes and CO: reaction development and application to the formal synthesis of (−)-galanthamine
    作者:Cheng-Hang Liu、Zhi-Xiang Yu
    DOI:10.1039/c6ob00660d
    日期:——
    A Rh-catalysed [5 + 1] cycloaddition of allenylcyclopropanes and CO has been developed to synthesize functionalized 2-methylidene-3,4-cyclohexenones. The scope of this methodology has been investigated, showing that various functional groups can be tolerated. Both di- and tri-substituted allenylcyclopropanes can be applied to this cycloaddition and the [5 + 1] cycloadducts with the E configuration
    已开发了Rh催化的烯丙基环丙烷和CO的[5 +1]环加成反应,以合成官能化的2-亚甲基-3,4-环己烯酮。已经研究了这种方法的范围,表明可以容忍各种官能团。二取代和三取代的烯基环丙烷均可用于该环加成反应,并获得具有E构型的[5 +1]环加合物作为主要产物。另外,本发明的[5 + 1]环加成反应已被用作天然产物(-)-加兰他敏的形式合成中的关键步骤。
  • Asymmetric Aerobic Oxidative Cross-Coupling of Tetrahydroisoquinolines with Alkynes
    作者:Tianyu Huang、Xiaohua Liu、Jiawen Lang、Jian Xu、Lili Lin、Xiaoming Feng
    DOI:10.1021/acscatal.7b01912
    日期:2017.9.1
    An efficient asymmetric aerobic oxidation of tetrahydroisoquinolines with terminal alkynes was realized under mild reaction conditions using O2 as the sole oxidant. A chiral N,N′-dioxide/zinc(II)/iron(II) bimetallic cooperative catalytic system proves to be efficient for the formation of various α-alkynyl substituted tetrahydroisoquinolines in good to excellent yields and enantioselectivities. A primary
    使用O 2作为唯一氧化剂,在温和的反应条件下,实现了四氢异喹啉与末端炔烃的有效不对称需氧氧化。手性N,N′-二氧化物/(II)/(II)双属协同催化体系被证明可有效地形成各种α-炔基取代的四氢异喹啉,并具有良好的产率和对映选择性。初步的机理研究支持将乙炔对映体选择性亲电加成到亚胺中间体上,该中间体是通过涉及分子O 2的氧化过程形成的。
  • Nucleophilic substitutions of 1-alkenylcyclopropyl esters and 1-alkynylcyclopropyl chlorides catalyzed by palladium(0)
    作者:Andreas Stolle、Jean Ollivier、Pier Paolo Piras、Jacques Salaun、Armin De Meijere
    DOI:10.1021/ja00037a006
    日期:1992.5
    dimethylallyl acetates 19 and 22, respectively. Use of chiral phosphines as ligands in the palladium catalyst can provide optically active methylenecyclopropane derivatives. With phenyl-, methyl-, and even n-butylzinc chloride as nucleophiles, the reaction apparently proceeds with initial transfer of the organic residue to palladium, followed by reductive elimination entailing tertiary substitution on the cyclopropane
    1-乙烯基环丙基磺酸盐 2e,f 和 2-环亚丙基乙酯 10b,c 很容易从环丙酮半缩醛 1 中获得,通过不对称的 1,1-二亚甲基-pi}-烯丙基络合物 23 进行区域选择性 Pd(0) 催化的亲核取代。稳定的阴离子(丙二酸酯的烯醇化物、β}-二羰基化合物、β}-磺酰酯和席夫碱以及乙酸根阴离子、磺酰胺阴离子等),亲核取代仅发生在末端乙烯基位置,提供环亚丙基乙基衍生物作为具有高合成潜力的基石。竞争实验表明,甲苯磺酸 1-乙烯基环丙基酯 (2e) 和环亚丙基乙酸乙酯 (10b) 分别比乙酸二甲基烯丙酯 19 和 22 更具反应性。在催化剂中使用手性膦作为配体可以提供旋光亚甲基环丙烷生物。使用苯基氯化锌、甲基氯化锌甚至正丁基氯化锌作为亲核试剂时,反应显然会进行,首先将有机残基转移到上,然后进行还原消除,仅在环丙烷环上进行三级取代;用叠氮化物和双(三甲基甲硅烷基)酰胺得到相同类型的产
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫