我们对呋喃脂肪酸 (F-acids) 与单线态氧 ( 1 O 2 ) 的反应性进行了详细研究,单线态氧 ( 1 O 2 ) 由内过氧化物的热分解和玫瑰红在乙醇中的光敏剂反应产生。因此,我们测量了 F-酸与1 O 2反应的二阶速率常数 ( k Q ) 。结果,F-酸对1 O 2的反应性按四烷基 F-酸 (F 3 ) > 三烷基 F-酸 (F 2) > 二烷基 F-酸 (NMF)。此外,我们还采用密度泛函理论 (DFT) 和量子化学计算来预测 F-酸与猝灭1 O 2相关的化学反应性、稳定性和热力学性质。因此,很明显,F 酸的 log k Q值与最高占据分子轨道 ( E HOMO )的能级相关,F 酸的 HOMO 可能与1的最低未占据分子轨道 (LUMO) 反应哦2。此外,F-酸与1 O 2的反应根据热力学方法计算,在乙醇中自发进行。这些结果表明,F-酸可能通过猝灭1 O 2有助于保护动物体内的氧化损伤。
The Furan Fatty Acid 9M5 Acts as a Partial Ligand to Peroxisome Proliferator‐Activated Receptor gamma and Enhances Adipogenesis in 3T3‐L1 Preadipocytes
health is fish, particularly its polyunsaturated n‐3 fattyacids, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). However, it has recently been suggested that minor fattyacids such as furanfattyacids are needed in combination with DHA and EPA to exert these positive effects of fish and fish oils. Only recently have furanfattyacids become available in quantities that allow the investigation
鱼,尤其是它的多不饱和n-3脂肪酸,包括二十二碳六烯酸(DHA)和二十碳五烯酸(EPA),对整体健康有益,因此受到赞誉。但是,近来有人提出,需要少量脂肪酸,例如呋喃脂肪酸,与DHA和EPA结合才能发挥鱼和鱼油的这些积极作用。直到最近,呋喃脂肪酸的数量才可以用于研究其生物功能特性。在这项研究中,分析了呋喃脂肪酸9-(3-甲基-5-戊基呋喃-2-基)壬酸(9M5)作为唯一成分并与DHA和EPA联合对脂肪形成的吸收和作用。 3T3-L1细胞模型。9M5被吸收并代谢为7M5、5M5,气相色谱-质谱分析(GC / MS)显示,在24小时内3T3-L1脂肪细胞中的3M5和3M5。此外,在3T3-L1前脂肪细胞分化为脂肪细胞的过程中,9M5显着增加了脂质积累。此外,与对照脂肪细胞相比,DHA + 9M5和EPA + DHA + 9M5的组合也发挥了显着的作用。与9M5孵育的3T3-L1细胞导致PPARγ,C
Enzymes for producing non-straight-chain fatty acids
申请人:WISCONSIN ALUMNI RESEARCH FOUNDATION
公开号:US10273511B2
公开(公告)日:2019-04-30
Enzymes for producing non-straight-chain fatty acids, microorganisms comprising the enzymes, and in vivo and in vitro uses of the enzymes. Provided are enzymes capable of producing various non-straight-chain fatty acids, including branched-chain fatty acids, cyclic fatty acids, and furan-containing fatty acids. The enzymes include RSP2144, RSP1091, and RSP1090 from Rhodobacter sphaeroides and homologs thereof. The enzymes can be purified to produce non-straight-chain fatty acids in vitro or expressed in microorganisms to produce non-straight-chain fatty acids in vivo. The microorganisms can be fine-tuned to produce a specific type of non-straight-chain fatty acid by expressing, overexpressing, or deleting the enzymes in various combinations.
SCHEINKONIG, JOSEF;SPITELLER, GERHARD, LIEBIGS ANN. CHEM.,(1991) N, C. 451-453
作者:SCHEINKONIG, JOSEF、SPITELLER, GERHARD
DOI:——
日期:——
ENZYMES FOR PRODUCING NON-STRAIGHT-CHAIN FATTY ACIDS
申请人:WISCONSIN ALUMNI RESEARCH FOUNDATION
公开号:US20150376659A1
公开(公告)日:2015-12-31
Enzymes for producing non-straight-chain fatty acids, microorganisms comprising the enzymes, and in vivo and in vitro uses of the enzymes. Provided are enzymes capable of producing various non-straight-chain fatty acids, including branched-chain fatty acids, cyclic fatty acids, and furan-containing fatty acids. The enzymes include RSP2144, RSP1091, and RSP1090 from
Rhodobacter sphaeroides
and homologs thereof. The enzymes can be purified to produce non-straight-chain fatty acids in vitro or expressed in microorganisms to produce non-straight-chain fatty acids in vivo. The microorganisms can be fine-tuned to produce a specific type of non-straight-chain fatty acid by expressing, overexpressing, or deleting the enzymes in various combinations.
Tsukasa, Hidetaka, Bioscience, Biotechnology and Biochemistry, 1993, vol. 57, # 3, p. 511 - 512