Merging the disciplines of green chemistry, ecotoxicology and ecology to develop environmentally-friendly industrial chemicals represents a significant collaborative challenge. This challenge can be met by extending already-informative standard toxicity and biodegradability assays to include further information about the potential persistence and biotransformation of pollutants in the environment. Development of ionic liquids (ILs) provides an ideal and proactive test system to determine several levels of environmental impact using academically interesting and industrially relevant green chemical prototypes. In this study, we investigated the biodegradability of three ILs, 1-butyl-3-methylpyridinium bromide, 1-hexyl-3-methylpyridinium bromide and 1-octyl-3-methylpyridinium bromide, by activated sludge microbial communities. We determined that all three ILs could be fully mineralized, but that only the octyl-substituted cation could be classified as “readily biodegradable”. We directly examined biodegradation products of the ILs using reverse-phase high performance liquid chromatography/mass spectrometry and MS/MS methods, and identified several unique preliminary degradation products. Finally, we determined that IL-biodegradation products were less toxic than the initial compound to a standard aquatic test organism, Daphnia magna, suggesting that biodegradation in an aquatic environment would decrease toxicity hazards associated with the initial compound. This study provides further information about pyridinium IL-biodegradation and guidelines to structure future IL design and research.
融合绿色
化学、生态毒理学和生态学等学科,开发环境友好型工业
化学品是一项重大的合作挑战。要应对这一挑战,就必须扩展已有的信息丰富的标准毒性和
生物降解性检测方法,使其包括有关污染物在环境中的潜在持久性和
生物转化的更多信息。
离子液体(ILs)的开发提供了一个理想而积极的测试系统,可利用学术上有趣且与工业相关的绿色
化学原型来确定环境影响的多个级别。在这项研究中,我们调查了活性污泥微
生物群落对三种
离子液体(1-丁基-3-
甲基溴化吡啶鎓、1-己基-3-
甲基溴化吡啶鎓和 1-辛基-3-
甲基溴化吡啶鎓)的
生物降解性。我们确定这三种 IL 都可以完全矿化,但只有辛基取代的阳离子可以归类为 "易于
生物降解"。我们使用反相高效
液相色谱/质谱法和 MS/MS 法直接检测了 IL 的
生物降解产物,并确定了几种独特的初步降解产物。最后,我们确定,与初始化合物相比,IL
生物降解产物对标准
水生测试
生物大型蚤的毒性更低,这表明在
水生环境中的
生物降解会降低与初始化合物相关的毒性危害。本研究提供了有关
吡啶鎓惰性
生物降解的更多信息,并为今后惰性
生物降解的设计和研究提供了指导。