Iron-Catalyzed Nitrene Transfer Reaction of 4-Hydroxystilbenes with Aryl Azides: Synthesis of Imines via C═C Bond Cleavage
作者:Yi Peng、Yan-Hui Fan、Si-Yuan Li、Bin Li、Jing Xue、Qing-Hai Deng
DOI:10.1021/acs.orglett.9b03160
日期:2019.10.18
C═C bond breaking to access the C═N bond remains an underdeveloped area. A new protocol for C═C bond cleavage of alkenes under nonoxidative conditions to produce imines via an iron-catalyzed nitrene transfer reaction of 4-hydroxystilbenes with aryl azides is reported. The success of various sequential one-pot reactions reveals that the good compatibility of this method makes it very attractive for
aryl N-nitrosamines to secondary amines is reported under metal-free conditions using iodine and triethylsilane. Several reduction-susceptible functional groups such as alkene, alkyne, nitrile, nitro, aldehyde, ketone and ester were found to be very stable during the denitrosation, which is remarkable. Broad substrate scope, roomtemperature reactions and excellent yields are the additional features
from a rhodium center to imine substrates in a biomimetic way. Under both transfer hydrogenation and reductiveamination reaction conditions, the catalyst exhibited good selectivity towards CN bonds. With the catalyst, 34 imines were transfer hydrogenated to corresponding amines and a key intermediate of retigabine was prepared via reductiveamination in a greener way. According to the NMR observations
将基于金属和键合辅因子模拟物之间合作的策略应用于 CN 键的转移氢化。我们设计并合成了一种含有 1,3-二甲基苯并咪唑部分的铑配合物,它可以以仿生的方式将氢化物从铑中心转移到亚胺底物上。在转移氢化和还原胺化反应条件下,催化剂对C N 键表现出良好的选择性。使用该催化剂,34个亚胺被转移氢化成相应的胺,并通过还原胺化以更绿色的方式制备了瑞替加滨的关键中间体。根据核磁共振观察和同位素实验,提出了这种仿生还原碳氮键的合理机制。
Using allosteric hemoglobin modifiers to decrease oxygen affinity in blood
申请人:Virginia Commonwealth University
Intellectual Property Foundation, Inc.
公开号:EP1236711A2
公开(公告)日:2002-09-04
A family of compounds has been found to be useful for right-shifting hemoglobin towards a low oxygen affinity state. The compounds are capable of acting on hemoglobin in whole blood. In addition, the compounds can maintain the oxygen affinity in blood during storage and can restore the oxygen affinity of outdated blood.