摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-Pyridin-2-ylquinoline-4-carbonyl chloride hydrochloride | 92566-26-2

中文名称
——
中文别名
——
英文名称
2-Pyridin-2-ylquinoline-4-carbonyl chloride hydrochloride
英文别名
2-pyridin-2-ylquinoline-4-carbonyl chloride
2-Pyridin-2-ylquinoline-4-carbonyl chloride hydrochloride化学式
CAS
92566-26-2
化学式
C15H9ClN2O
mdl
MFCD18205905
分子量
268.702
InChiKey
IZGLDEHASPLXFF-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    452.7±40.0 °C(Predicted)
  • 密度:
    1.332±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    3.3
  • 重原子数:
    19
  • 可旋转键数:
    2
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    42.8
  • 氢给体数:
    0
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2

反应信息

  • 作为反应物:
    描述:
    2-Pyridin-2-ylquinoline-4-carbonyl chloride hydrochloride三溴化硼三乙胺 作用下, 以 二氯甲烷 为溶剂, 反应 2.75h, 生成 N-(4-hydroxyphenyl)-2-(pyridin-2-yl)quinoline-4-carboxamide
    参考文献:
    名称:
    Small Molecule Quantification by Liquid Chromatography-Mass Spectrometry for Metabolites of Drugs and Drug Candidates
    摘要:
    药物及药物候选物代谢物的鉴定和定量通常使用液相色谱-质谱联用技术 (LC-MS) 进行。最佳实践是生成以代谢物与内标的标准曲线。然而,为了避免代谢物合成的困难,有时会使用底物来准备标准曲线,假设底物和代谢物的信号是等效的。我们使用一系列非常相似的化合物,这些化合物经历共同的代谢反应,测试了这一假设所带来的误差,采用了传统流动电喷雾电离 LC-MS 和低流量捕获喷雾电离 (CSI) LC-MS 方法。文中展示了四种不同转化类型(O-去甲基化、N-去甲基化、芳香族羟基化和苄基羟基化)的标准曲线差异。结果表明,在20种底物-代谢物组合中的18种情况下,两种方法中底物和代谢物的信号在统计上是显著不同的。标准曲线的斜率比率最高可变化4倍,但CSI方法的变化略小。
    DOI:
    10.1124/dmd.111.040865
  • 作为产物:
    参考文献:
    名称:
    Small Molecule Quantification by Liquid Chromatography-Mass Spectrometry for Metabolites of Drugs and Drug Candidates
    摘要:
    药物及药物候选物代谢物的鉴定和定量通常使用液相色谱-质谱联用技术 (LC-MS) 进行。最佳实践是生成以代谢物与内标的标准曲线。然而,为了避免代谢物合成的困难,有时会使用底物来准备标准曲线,假设底物和代谢物的信号是等效的。我们使用一系列非常相似的化合物,这些化合物经历共同的代谢反应,测试了这一假设所带来的误差,采用了传统流动电喷雾电离 LC-MS 和低流量捕获喷雾电离 (CSI) LC-MS 方法。文中展示了四种不同转化类型(O-去甲基化、N-去甲基化、芳香族羟基化和苄基羟基化)的标准曲线差异。结果表明,在20种底物-代谢物组合中的18种情况下,两种方法中底物和代谢物的信号在统计上是显著不同的。标准曲线的斜率比率最高可变化4倍,但CSI方法的变化略小。
    DOI:
    10.1124/dmd.111.040865
点击查看最新优质反应信息

文献信息

  • Small Molecule Quantification by Liquid Chromatography-Mass Spectrometry for Metabolites of Drugs and Drug Candidates
    作者:Upendra P. Dahal、Jeffrey P. Jones、John A. Davis、Dan A. Rock
    DOI:10.1124/dmd.111.040865
    日期:2011.12
    Identification and quantification of the metabolites of drugs and drug candidates are routinely performed using liquid chromatography-mass spectrometry (LC-MS). The best practice is to generate a standard curve with the metabolite versus the internal standard. However, to avoid the difficulties in metabolite synthesis, standard curves are sometimes prepared using the substrate, assuming that the signal for substrate and the metabolite will be equivalent. We have tested the errors associated with this assumption using a series of very similar compounds that undergo common metabolic reactions using both conventional flow electrospray ionization LC-MS and low-flow captive spray ionization (CSI) LC-MS. The differences in standard curves for four different types of transformations (O-demethylation, N-demethylation, aromatic hydroxylation, and benzylic hydroxylation) are presented. The results demonstrate that the signals of the substrates compared with those of the metabolites are statistically different in 18 of the 20 substrate-metabolite combinations for both methods. The ratio of the slopes of the standard curves varied up to 4-fold but was slightly less for the CSI method.
    药物及药物候选物代谢物的鉴定和定量通常使用液相色谱-质谱联用技术 (LC-MS) 进行。最佳实践是生成以代谢物与内标的标准曲线。然而,为了避免代谢物合成的困难,有时会使用底物来准备标准曲线,假设底物和代谢物的信号是等效的。我们使用一系列非常相似的化合物,这些化合物经历共同的代谢反应,测试了这一假设所带来的误差,采用了传统流动电喷雾电离 LC-MS 和低流量捕获喷雾电离 (CSI) LC-MS 方法。文中展示了四种不同转化类型(O-去甲基化、N-去甲基化、芳香族羟基化和苄基羟基化)的标准曲线差异。结果表明,在20种底物-代谢物组合中的18种情况下,两种方法中底物和代谢物的信号在统计上是显著不同的。标准曲线的斜率比率最高可变化4倍,但CSI方法的变化略小。
  • Identification of a New Series of STAT3 Inhibitors by Virtual Screening
    作者:Kenji Matsuno、Yoshiaki Masuda、Yutaka Uehara、Hiroshi Sato、Ayumu Muroya、Osamu Takahashi、Takane Yokotagawa、Toshio Furuya、Tadashi Okawara、Masami Otsuka、Naohisa Ogo、Tadashi Ashizawa、Chie Oshita、Sachiko Tai、Hidee Ishii、Yasuto Akiyama、Akira Asai
    DOI:10.1021/ml1000273
    日期:2010.11.11
    The signal transducer and activator of transcription 3 (STAT3) is considered to be an attractive therapeutic target for oncology drug development. We identified a N-[2-(1,3,4-oxadiazolyl)]-4-quinolinecarboxamide derivative, STX-0119, as a novel STAT3 dimerization inhibitor by a virtual screen using a customized version of the DOCK4 program with the crystal structure of STAT3 In addition, we used in vitro cell-based assays such as the luciferase reporter gene assay and the fluorescence resonance energy transfer-based STAT3 dimerization assay STX-0119 selectively abrogated the DNA binding activity of STAT3 and suppressed the expression of STAT3-regulated oncoproteins such as c-myc and survivin in cancer cells. In contrast a truncated inactive analogue, STX-0872, did not exhibit those activites, Oral administration of STX-0119 effectively abrogated the growth of human lymphoma cells in a SCC-3 subcutaneous xenograft model without visible toxicity Structure-activity relationships of STX-0119 derivatives were investigated using the docking model of the STAT3-SH2 domain/STX-0119.
  • Cytochrome P450 2C9 Type II Binding Studies on Quinoline-4-Carboxamide Analogues
    作者:Chi-Chi Peng、Jonathan L. Cape、Tom Rushmore、Gregory J. Crouch、Jeffrey P. Jones
    DOI:10.1021/jm8011257
    日期:2008.12.25
    CYP2C9 is a significant P450 protein responsible for drug metabolism. With the increased use of heterocyclic compounds in drug design, a rapid and efficient predrug screening of these potential type II binding compounds is essential to avoid adverse drug reactions. To understand binding modes, we use quinoline-4-carboxamide analogues to study the factors that determine the structure-activity relationships. The results of this study suggest that the more accessible pyridine with the nitrogen para to the linkage can coordinate directly with the ferric heme iron, but this is not seen for the meta or ortho isomers. The pi-cation interaction of the naphthalene moiety and Arg 108 residue may also assist in stabilizing Substrate binding within the active-site cavity. The type II substrate binding affinity is determined by the combination of steric, electrostatic, and hydrophobicity factors; meanwhile, it is enhanced by the strength of lone pair electrons coordination with the heme iron.
  • Comparative Study of the Affinity and Metabolism of Type I and Type II Binding Quinoline Carboxamide Analogues by Cytochrome P450 3A4
    作者:Upendra P. Dahal、Carolyn Joswig-Jones、Jeffrey P. Jones
    DOI:10.1021/jm201207h
    日期:2012.1.12
    Compounds that coordinate to the heme-iron of cytochrome P450 (CYP) enzymes are assumed to increase metabolic stability. However, recently we observed that the type II binding quinoline carboxamide (QCA) compounds were metabolically less stable. To test if the higher intrinsic clearance of type II binding compounds relative to type I binding compounds is general for other metabolic transformations, we synthesized a library of QCA compounds that could undergo N-dealkylation, O-dealkylation, benzylic hydroxylation, and aromatic hydroxylation. The results demonstrated that type II binding QCA analogues were metabolically less stable (2- to 12-fold) at subsaturating concentration compared to type I binding counterparts for all the transformations. When the rates of different metabolic transformations between type I and type II binding compounds were compared, they were found to be in the order of N-demethylation > benzylic hydroxylation > O-demethylation > aromatic hydroxylation. Finally, for the QCA analogues with aza-heteroaromatic rings, we did not detect metabolism in aza-aromatic rings (pyridine, pyrazine, pyrimidine), indicating that electronegativity of the nitrogen can change regioselectivity in CYP metabolism.
查看更多

同类化合物

(S)-氨氯地平-d4 (R,S)-可替宁N-氧化物-甲基-d3 (R)-N'-亚硝基尼古丁 (5E)-5-[(2,5-二甲基-1-吡啶-3-基-吡咯-3-基)亚甲基]-2-亚磺酰基-1,3-噻唑烷-4-酮 (5-溴-3-吡啶基)[4-(1-吡咯烷基)-1-哌啶基]甲酮 (5-氨基-6-氰基-7-甲基[1,2]噻唑并[4,5-b]吡啶-3-甲酰胺) (2S)-2-[[[9-丙-2-基-6-[(4-吡啶-2-基苯基)甲基氨基]嘌呤-2-基]氨基]丁-1-醇 (2R,2''R)-(+)-[N,N''-双(2-吡啶基甲基)]-2,2''-联吡咯烷四盐酸盐 黄色素-37 麦斯明-D4 麦司明 麝香吡啶 鲁非罗尼 鲁卡他胺 高氯酸N-甲基甲基吡啶正离子 高氯酸,吡啶 高奎宁酸 马来酸溴苯那敏 马来酸左氨氯地平 顺式-双(异硫氰基)(2,2'-联吡啶基-4,4'-二羧基)(4,4'-二-壬基-2'-联吡啶基)钌(II) 顺式-二氯二(4-氯吡啶)铂 顺式-二(2,2'-联吡啶)二氯铬氯化物 顺式-1-(4-甲氧基苄基)-3-羟基-5-(3-吡啶)-2-吡咯烷酮 顺-双(2,2-二吡啶)二氯化钌(II) 水合物 顺-双(2,2'-二吡啶基)二氯化钌(II)二水合物 顺-二氯二(吡啶)铂(II) 顺-二(2,2'-联吡啶)二氯化钌(II)二水合物 非那吡啶 非洛地平杂质C 非洛地平 非戈替尼 非尼拉朵 非尼拉敏 阿雷地平 阿瑞洛莫 阿培利司N-6 阿伐曲波帕杂质40 间硝苯地平 间-硝苯地平 锇二(2,2'-联吡啶)氯化物 链黑霉素 链黑菌素 银杏酮盐酸盐 铬二烟酸盐 铝三烟酸盐 铜-缩氨基硫脲络合物 铜(2+)乙酸酯吡啶(1:2:1) 铁5-甲氧基-6-甲基-1-氧代-2-吡啶酮 钾4-氨基-3,6-二氯-2-吡啶羧酸酯 钯,二氯双(3-氯吡啶-κN)-,(SP-4-1)-