摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

R,S-4-(benzyloxy)-3-bromo-4-oxobutanoic acid | 197014-62-3

中文名称
——
中文别名
——
英文名称
R,S-4-(benzyloxy)-3-bromo-4-oxobutanoic acid
英文别名
Bromosuccinic acid monobenzyl ester;3-bromo-4-oxo-4-phenylmethoxybutanoic acid
R,S-4-(benzyloxy)-3-bromo-4-oxobutanoic acid化学式
CAS
197014-62-3
化学式
C11H11BrO4
mdl
——
分子量
287.11
InChiKey
GFIZHVGBVDEXAG-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.9
  • 重原子数:
    16
  • 可旋转键数:
    6
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.27
  • 拓扑面积:
    63.6
  • 氢给体数:
    1
  • 氢受体数:
    4

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    Nanoprecipitation of Biocompatible Poly(malic acid) Derivative, Its Ability to Encapsulate a Molecular Photothermal Agent and Photothermal Properties of the Resulting Nanoparticles
    摘要:
    通过纳米沉淀法制备了亲水性聚苯基丙酸苄酯(PMLABe)的生物相容性纳米颗粒(NPs)。研究了纳米沉淀参数(初始PMLABe,添加速率,有机溶剂/水比和搅拌速度)对颗粒的水动力直径(Dh)和分散性(PDI)的影响,以优化所得到的配方。使用优化的纳米沉淀条件分离出了Dh为160 nm,PDI为0.11的PMLABe NPs。然后,使用优化的纳米沉淀条件将疏水的近红外(NIR)光热活性的双硫醇配合物镍(Ni8C12)封装到PMLABe NPs中。测量了NPs的尺寸和封装效率,发现可以有效地封装高达50重量百分比(wt%)的Ni8C12配合物,并略微增加相应Ni8C12载荷NPs的Dh。此外,我们证明了封装Ni8C12的NP在存储条件(4°C)下至少可稳定保存10天。最后,评估了Ni8C12载荷NPs的光热性能,并测量出10 wt% Ni8C12配合物的NPs具有高光热效率(62.7±6.0%)。
    DOI:
    10.3390/molecules26247703
  • 作为产物:
    参考文献:
    名称:
    Nanoprecipitation of Biocompatible Poly(malic acid) Derivative, Its Ability to Encapsulate a Molecular Photothermal Agent and Photothermal Properties of the Resulting Nanoparticles
    摘要:
    通过纳米沉淀法制备了亲水性聚苯基丙酸苄酯(PMLABe)的生物相容性纳米颗粒(NPs)。研究了纳米沉淀参数(初始PMLABe,添加速率,有机溶剂/水比和搅拌速度)对颗粒的水动力直径(Dh)和分散性(PDI)的影响,以优化所得到的配方。使用优化的纳米沉淀条件分离出了Dh为160 nm,PDI为0.11的PMLABe NPs。然后,使用优化的纳米沉淀条件将疏水的近红外(NIR)光热活性的双硫醇配合物镍(Ni8C12)封装到PMLABe NPs中。测量了NPs的尺寸和封装效率,发现可以有效地封装高达50重量百分比(wt%)的Ni8C12配合物,并略微增加相应Ni8C12载荷NPs的Dh。此外,我们证明了封装Ni8C12的NP在存储条件(4°C)下至少可稳定保存10天。最后,评估了Ni8C12载荷NPs的光热性能,并测量出10 wt% Ni8C12配合物的NPs具有高光热效率(62.7±6.0%)。
    DOI:
    10.3390/molecules26247703
点击查看最新优质反应信息

文献信息

  • Investigations of the Photothermal Properties of a Series of Molecular Gold‐bis(dithiolene) Complexes Absorbing in the NIR‐III Region
    作者:Jean‐Baptiste Pluta、Romain Guechaichia、Antoine Vacher、Nathalie Bellec、Sandrine Cammas‐Marion、Franck Camerel
    DOI:10.1002/chem.202301789
    日期:2023.9.26
    Abstract

    The photothermal properties of a series of neutral radical gold‐bis(dithiolene) complexes absorbing in the near‐infrared‐III window (1550–1870 nm) have been investigated. This class of complexes was found to be good photothermal agents (PTAs) in toluene under 1600 nm laser irradiation with photothermal efficiencies around 40 and 60 % depending on the nature of the dithiolene ligand. To the best of our knowledge, these complexes are the first small molecular photothermal agents to absorb so far into the near infrared. To test their applicability in water, these hydrophobic complexes have been encapsulated into nanoparticles constituted by amphiphilic block‐copolymers. Stable suspensions of polymeric nanoparticles (NPs) encapsulating the gold‐bis(dithiolene) complexes have been prepared which show a diameter around 100 nm. The encapsulation rate was found to be strongly dependent on the nature of the dithiolene ligands. The photothermal properties of the aqueous suspensions containing gold‐bis(dithiolene) complexes were then studied under 1600 nm laser irradiation. These studies demonstrate that water has strong photothermal activity in the NIR‐III region that, cannot be overcome even with the addition of gold complexes displaying good photothermal properties.

    摘要 研究了一系列在近红外-III 窗口(1550-1870 纳米)吸收的中性自由基金-双(二硫代二烯)配合物的光热特性。研究发现,在 1600 纳米激光照射下,这类配合物在甲苯中具有良好的光热效应(PTAs),根据二硫环戊烯配体的性质,光热效率约为 40% 和 60%。据我们所知,这些复合物是首批吸收近红外的小分子光热剂。为了测试它们在水中的适用性,我们将这些疏水性复合物封装到了由两性嵌段聚合物构成的纳米颗粒中。已制备出封装金-双(二硫烯)络合物的稳定聚合物纳米粒子(NPs)悬浮液,其直径约为 100 纳米。研究发现,封装率与二硫环戊烯配体的性质密切相关。随后,在 1600 纳米激光照射下,研究了含有金-双(二硫代二苯)配合物的水悬浮液的光热特性。这些研究表明,水在近红外-III 区具有很强的光热活性,即使添加了具有良好光热特性的金配合物,也无法克服这一特性。
  • Tumor-Targeting, pH-Responsive, and Stable Unimolecular Micelles as Drug Nanocarriers for Targeted Cancer Therapy
    作者:Xiaoqiang Yang、Jamison J. Grailer、Srikanth Pilla、Douglas A. Steeber、Shaoqin Gong
    DOI:10.1021/bc900422j
    日期:2010.3.17
    A new type of multifunctional unimolecular micelle drug nanocarrier based on amphiphilic hyperbranched block copolymer for targeted cancer therapy was developed. The core of the unimolecular micelle was a hyperbranced aliphatic polyester, Boltorn H40. The inner hydrophobic layer was composed of random copolymer of poly(epsilon- caprolactone) and poly(malic acid) (PMA-co-PCL) segments, while the outer hydrophilic shell was composed of poly(ethylene glycol) (PEG) segments. Active tumor-targeting ligands, i.e., folate (FA), Were selectively conjugated to the distal ends of the PEG segments. An anticancer drug, i.e,. doxorubicin (DOX) molecules, was conjugated onto the PMA segments with pH-sensitive drug binding linkers for pH-triggered drug release. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis Showed that file unimolecualr micelles were uniform with a mean hydrodynamic diameter aroound 25 nm. The drug loading content was determined to be 14.2%. The drug release profile, cell uptake and distribution, and cytotoxicity of the unimolecular micelles were evaluated in vitro. The folate-conjugated micelles can be internalized by the cancer cells via folate-receptor- mediated endocytosis; thus, they exhibited enhanced cell uptake and cytotoxicity. At pH 7.4, the physiological condition of bloodstream, DOX conjugated onto the unimoleclar micelles exhibited excellent stability; however, once the micelles were internalized by the cancer cells, the pH-sensitive hydrazone linkages were cleavable by the intracellular acidic enivronment, which initially caused a rapid release of DOX. These finding indicate that these unique unimolecular micelles may offer a very promising approach for targeted cancer therapy.
  • US4265247A
    申请人:——
    公开号:US4265247A
    公开(公告)日:1981-05-05
  • US4320753A
    申请人:——
    公开号:US4320753A
    公开(公告)日:1982-03-23
  • Nanoprecipitation of Biocompatible Poly(malic acid) Derivative, Its Ability to Encapsulate a Molecular Photothermal Agent and Photothermal Properties of the Resulting Nanoparticles
    作者:Marian Gabriela Vargas Guerrero、Jean-Baptiste Pluta、Nathalie Bellec、Sandrine Cammas-Marion、Franck Camerel
    DOI:10.3390/molecules26247703
    日期:——

    Biocompatible nanoparticles (NPs) of hydrophobic poly(benzyl malate) (PMLABe) were prepared by nanoprecipitation. The influence of nanoprecipitation parameters (initial PMLABe, addition rate, organic solvent/water ratio and stirring speed) were studied to optimize the resulting formulations in terms of hydrodynamic diameter (Dh) and dispersity (PDI). PMLABe NPs with a Dh of 160 nm and a PDI of 0.11 were isolated using the optimized nanoprecipitation conditions. A hydrophobic near infra-red (NIR) photothermally active nickel-bis(dithiolene) complex (Ni8C12) was then encapsulated into PMLABe NPs using the optimized nanoprecipitation conditions. The size and encapsulation efficiency of the NPs were measured, revealing that up to 50 weight percent (wt%) of Ni8C12 complex can efficiently be encapsulated with a slight increase in Dh of the corresponding Ni8C12-loaded NPs. Moreover, we have shown that NP encapsulating Ni8C12 were stable under storage conditions (4 °C) for at least 10 days. Finally, the photothermal properties of Ni8C12-loaded NPs were evaluated and a high photothermal efficiency (62.7 ± 6.0%) waswas measured with NPs incorporating 10 wt% of the Ni8C12 complex.

    通过纳米沉淀法制备了亲水性聚苯基丙酸苄酯(PMLABe)的生物相容性纳米颗粒(NPs)。研究了纳米沉淀参数(初始PMLABe,添加速率,有机溶剂/水比和搅拌速度)对颗粒的水动力直径(Dh)和分散性(PDI)的影响,以优化所得到的配方。使用优化的纳米沉淀条件分离出了Dh为160 nm,PDI为0.11的PMLABe NPs。然后,使用优化的纳米沉淀条件将疏水的近红外(NIR)光热活性的双硫醇配合物镍(Ni8C12)封装到PMLABe NPs中。测量了NPs的尺寸和封装效率,发现可以有效地封装高达50重量百分比(wt%)的Ni8C12配合物,并略微增加相应Ni8C12载荷NPs的Dh。此外,我们证明了封装Ni8C12的NP在存储条件(4°C)下至少可稳定保存10天。最后,评估了Ni8C12载荷NPs的光热性能,并测量出10 wt% Ni8C12配合物的NPs具有高光热效率(62.7±6.0%)。
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐